-
公开(公告)号:CN113657541A
公开(公告)日:2021-11-16
申请号:CN202110987414.8
申请日:2021-08-26
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明属于目标识别技术领域,具体的说是涉及一种基于深度知识集成的领域自适应目标识别方法。本发明实现了特征级和决策级的深度知识集成。在特征级设计公有映射矩阵和特有映射矩阵实现知识集成,提升目标识别性能的鲁棒性;其中,公有映射矩阵充分挖掘了异构特征的公有知识,特有映射矩阵保留了不同特征的特有知识。在决策级设计特征权重量化不同特征的重要程度,同时利用目标域样本通过在线学习更新特征权重,克服不同领域的数据分布差异,实现领域自适应目标识别。因此本发明提出的基于深度知识集成的领域自适应目标识别方法是一种智能的领域自适应目标识别方法。
-
公开(公告)号:CN113657541B
公开(公告)日:2023-10-10
申请号:CN202110987414.8
申请日:2021-08-26
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/40 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明属于目标识别技术领域,具体的说是涉及一种基于深度知识集成的领域自适应目标识别方法。本发明实现了特征级和决策级的深度知识集成。在特征级设计公有映射矩阵和特有映射矩阵实现知识集成,提升目标识别性能的鲁棒性;其中,公有映射矩阵充分挖掘了异构特征的公有知识,特有映射矩阵保留了不同特征的特有知识。在决策级设计特征权重量化不同特征的重要程度,同时利用目标域样本通过在线学习更新特征权重,克服不同领域的数据分布差异,实现领域自适应目标识别。因此本发明提出的基于深度知识集成的领域自适应目标识别方法是一种智能的领域自适应目标识别方法。
-