一种面向异构环境的基于深度强化学习的轨迹定位方法

    公开(公告)号:CN114727229B

    公开(公告)日:2025-01-17

    申请号:CN202210325226.3

    申请日:2022-03-30

    Abstract: 本发明属于室内定位技术领域,具体是涉及一种面向异构环境的基于深度强化学习的轨迹定位方法。本发明充分利用了环境中的观测和智能体自身的历史动态信息,以智能体的位置、环境中具有设备异构性的RSS向量和过去n个时刻的历史动作为状态,用于动作的选择。再基于近场条件选择强于RSS阈值对应的APs,以构成选定的APs集合,再根据集合的大小计算最终奖赏值。依据MDP中设计的各要素对智能体的位置进行估计,并以奖赏值为学习导向基于经验重放机制和目标网络进行深度强化学习算法的迭代训练。本发明基于路径损耗模型得到具有设备异构性的仿真RSS数据,实验结果证明本发明所提方法能够实现较高的定位精度,并对处理异构RSS数据也具有一定的鲁棒性。

    一种支撑点搜索的单目视觉室内定位方法

    公开(公告)号:CN114581522A

    公开(公告)日:2022-06-03

    申请号:CN202210207656.5

    申请日:2022-03-03

    Abstract: 本发明属于单目视觉室内定位技术领域,具体涉及一种支撑点搜索的单目视觉定位方法。本发明主要针对普通单目摄像头与定位环境较为固定的场景。通过本发明方法对可视环境中的目标进行高精度二维定位。具体可分为离线与在线两个阶段。离线阶段,对单目摄像头进行标定,获取内参矩阵以及畸变系数。采集定位环境图像,构建参考面定位坐标系。然后选择像素坐标与世界坐标点对求解单应矩阵。在线阶段,首先用目标检测网络对可视区域内的定位目标进行检测,根据输出结果对背景图像进行更新。然后根据输出的目标类别在目标检测框内进一步搜索,估计目标在参考面的定位像素点。最后定位像素点经畸变矫正与投影映射,估计得到目标在真实环境下的二维坐标。

    一种室内不确定系统的定位和跟踪方法

    公开(公告)号:CN116047896A

    公开(公告)日:2023-05-02

    申请号:CN202211279258.0

    申请日:2022-10-19

    Abstract: 本发明属于室内目标跟踪技术领域,具体是涉及一种室内不确定系统的定位和跟踪方法。本发明测量噪声与多源干扰下二阶非线性系统的模型相结合。首先通过最小二乘法得到位置信息的先验预估值,用于后续状态预估器的校准。然后设计基于径向基神经网络状态预估器同时对系统受到的集总干扰和系统的全部状态进行估计,得到一个相对于先验预测值更加平滑且准确的定位结果。最后使用预估器输出的系统状态以及集总干扰的预估值设计反步法控制律,驱动系统进行预设轨迹的跟踪。仿真结果表明所提出方法能够在测量噪声与多源干扰下获得准确且连续的定位、跟踪结果。

    一种基于多智能体深度强化学习与最小二乘的定位方法

    公开(公告)号:CN114578335B

    公开(公告)日:2024-08-16

    申请号:CN202210207643.8

    申请日:2022-03-03

    Abstract: 本发明属于无人机辅助轨迹定位的方法,具体涉及一种基于多智能体深度强化学习与最小二乘算法的定位方法。本发明建模一个无人机群与目标机器人相互通信的场景,利用有标签的无人机群和目标机器人的轨迹数据,以及二者之间的接收信号强度进行定位。首先使用最小二乘算法对目标位置进行定位,然后基于多智能体深度强化学习算法对无人机群进行自主定位,同时评估对目标位置的估计。训练过程中,使用深度神经网络处理高维状态输入,借助标签位置信息计算奖赏值,并考虑到多个智能体之间的异构性,进行了相关的仿真实验。通过训练可以得到一个自适应的网络模型,对处理高维异构数据也有一定的鲁棒性。因此,本发明是一种良好的定位替代技术。

    一种用于IMU阵列的低复杂度自校准方法

    公开(公告)号:CN117191086A

    公开(公告)日:2023-12-08

    申请号:CN202311186170.9

    申请日:2023-09-14

    Abstract: 本发明属于校准惯性测量单元技术领域,具体地说是涉及一种用于IMU阵列的低复杂度自校准方法。本发明首先利用迭代最近点算法对IMU阵列上的IMU进行坐标系的对齐,得到各个IMU的初始姿态,继而分别针对加速度计和陀螺仪建立信号模型,利用最大似然估计求解出各个IMU的几何距离。本发明能有效解决传感器安装误差以及传感器芯片内部传感元件物理位置未知的问题,从而提高了复杂阵列的适用性与定位精度。因此本发明提出的一种IMU阵列低复杂度的自校准方法是一种能够良好适用于不同阵列类型的稳定校准方法。

    一种基于层级化元迁移的小样本雷达目标识别方法

    公开(公告)号:CN115345322B

    公开(公告)日:2023-02-07

    申请号:CN202211276348.4

    申请日:2022-10-19

    Abstract: 本发明属于目标识别技术领域,具体的说是涉及一种基于小样本的层级化元迁移雷达目标识别方法。本发明基于注意力机制提取特征,在特征级、样本级、和任务级上的层级化深度知识迁移,以寻求一个嵌入空间使得样本接近同类目标的类别原子,远离于其他类目标的类别原子。其中,在特征级设计了基于注意力机制的特征编码器,充分挖掘样本全局性的域不变特征,以克服样本在数据分布上的域差异问题;在样本级设计原子编码器,生成更加稳定的类别原子,以避免离群样本的影响;在任务级,设计元学习器累积训练任务的学习经验迁移至新任务,培养模型跨任务知识迁移的能力,实现元迁移目标识别。本发明的目标识别方法是一种智能的目标识别方法。

Patent Agency Ranking