一种多尺度低照度图像增强网络模型

    公开(公告)号:CN119831870A

    公开(公告)日:2025-04-15

    申请号:CN202311326939.2

    申请日:2023-10-13

    Abstract: 本发明提出了一种多尺度低照度图像增强网络模型。近年来,图像增强技术已广泛应用于刑事侦查、医学成像等领域。然而,在低照度环境下拍摄的图像会存在亮度低、对比度低、颜色失真等情况,这些现象不仅会降低用户的视觉体验,还会干扰场景分析,对目标跟踪、图像融合等后续计算机视觉任务造成困难。针对图像增强中没有考虑多尺度以及通道等信息的问题。本发明引入了一种多层特征提取模块,提取多尺度特征,同时实现高低频特征的信息交互,节约计算量。同时利用空洞卷积扩大感受野。并在多层特征提取模块与最后引入残差结构,解决卷积过程中低层信息损失等问题。本项发明所提出的多尺度低照度图像增强网络模型,其拥有多层特征提取模块以及空洞卷积扩大感受野等有效技术手段,可极大地提高低照度图像的亮度、对比度和颜色还原度,进而解决该类图像存在的问题。除此之外,这种创新性的技术模型,具备广泛的应用前景,可广泛应用于刑事侦查、医学成像等领域,并有可能不断推动和促进图像增强技术的发展,为相关领域的研究和实践带来更加深远的影响和价值。

    一种基于深度学习的无人机图像增强方法

    公开(公告)号:CN119151806A

    公开(公告)日:2024-12-17

    申请号:CN202310696472.4

    申请日:2023-06-13

    Abstract: 本发明公开了一种基于深度学习的无人机图像增强方法。该发明针对RetinexNet算法对于图像中已经足够亮的像素,仍会进行增强处理,导致图像失真和信息丢失的问题,利用基于皮尔生长曲线对图像进行自适应亮度伽马校正,通过对图像的每个像素进行非线性变换来调整亮度,使其在人眼中具有更加平均的感知。针对RetinexNet算法会引入新的噪声的问题,本发明在Retinex分解模块引入引导滤波来替代高斯滤波对图像进行平滑去噪,利用高质量的引导图像来引导滤波器进行滤波,从而保留原始图像的边缘和细节;然后设计了基于引导滤波的Retinex分解模块,更好的计算图像的反射分量和光照分量。

Patent Agency Ranking