-
公开(公告)号:CN110718304B
公开(公告)日:2022-09-27
申请号:CN201910956307.1
申请日:2019-10-10
Applicant: 电子科技大学
Abstract: 本发明公开了一种艾滋病患者用药依从性监测方法。本发明通过提出一种基于3D骨架的ST‑GLSTM深层网络学习模型,以识别艾滋病患者服药动作及服药后的人体不良反应行为,对患者用药依从性进行监测。本发明通过构建骨架时空图,以关节点拓扑结构表示节点间空间位置关系,以时间序列边缘的形式表达关节点的活动轨迹,设计符合骨架时空图的图长短期记忆网络模型,包括向心、离心点群时间与空间遗忘门和向心点群时间与空间细胞状态,通过构建时空遗忘门与时空细胞状态,模拟骨架数据的时空状态,同时融合学习骨架根节点的向心点、离心点等邻居节点的时空特征,提高患者用药过程动作识别精度,完成对患者用药依从性的监测。
-
公开(公告)号:CN110659677A
公开(公告)日:2020-01-07
申请号:CN201910853810.4
申请日:2019-09-10
Applicant: 电子科技大学
Abstract: 本发明属于电子信息检测技术领域,公开了一种基于可移动传感器组合设备的人体跌倒检测方法,包括:基于可穿戴传感器系统采集人体用户传感器数据。对采集的传感器数据进行数值归一化处理。采用基于时序多模态学习的CorrRNN模型对采集的传感器数据分类。通过腰部及腕部传感器收集数据分别构建分类器,并对分类结果加权组合得到跌倒类别判断结果。本发明提出的方法通过两个可穿戴传感器结合进行跌倒检测,采用了CorrRNN模型,该模型以无监督的方式进行训练,消除了对标记数据的需要,并且结合GRU以捕获长期依赖性和时序输入结构。可极大提高跌倒检测检测精度。
-
公开(公告)号:CN110718304A
公开(公告)日:2020-01-21
申请号:CN201910956307.1
申请日:2019-10-10
Applicant: 电子科技大学
Abstract: 本发明公开了一种艾滋病患者用药依从性监测方法。本发明通过提出一种基于3D骨架的ST-GLSTM深层网络学习模型,以识别艾滋病患者服药动作及服药后的人体不良反应行为,对患者用药依从性进行监测。本发明通过构建骨架时空图,以关节点拓扑结构表示节点间空间位置关系,以时间序列边缘的形式表达关节点的活动轨迹,设计符合骨架时空图的图长短期记忆网络模型,包括向心、离心点群时间与空间遗忘门和向心点群时间与空间细胞状态,通过构建时空遗忘门与时空细胞状态,模拟骨架数据的时空状态,同时融合学习骨架根节点的向心点、离心点等邻居节点的时空特征,提高患者用药过程动作识别精度,完成对患者用药依从性的监测。
-
-