一种水体CDOM荧光及非荧光物质分布遥感探测方法

    公开(公告)号:CN116973319A

    公开(公告)日:2023-10-31

    申请号:CN202310952272.0

    申请日:2023-07-31

    Applicant: 燕山大学

    Abstract: 本发明公开了水体CDOM荧光及非荧光物质分布遥感探测方法,在目标流域布设调查点位,利用无人机高光谱探测器探测CDOM和荧光激光雷达探测FDOM;选取部分调查点位实测其CDOM和FDOM浓度;结合高光谱探测器探测的CDOM与实测CDOM浓度,建立CDOM浓度反演模型;通过反演模型结合调查点位高光谱数据,获得所有调查点位CDOM数据;结合LIF技术探测的荧光数据与实测FDOM浓度数据,建立FDOM浓度反演模型;通过反演模型结合调查点位荧光光谱数据,获得所有调查点位FDOM数据;结合CDOM浓度数据和FDOM浓度数据,得到NFDOM浓度;通过对数据进行分析,模拟FDOM和NFDDOM的浓度分布情况。

    基于卷积神经网络的海洋次表层CDOM遥感反演方法

    公开(公告)号:CN118797271A

    公开(公告)日:2024-10-18

    申请号:CN202410912117.0

    申请日:2024-07-09

    Applicant: 燕山大学

    Abstract: 本发明公开了基于卷积神经网络的海洋次表层CDOM遥感反演方法,属于海洋监测技术领域,包括:获取海洋表面卫星遥感数据集和BGC‑Argo数据集;对获取的BGC‑Argo数据进行线性插值和滤波处理;对获取的海洋表面卫星遥感数据进行空间插值、缺失值补全和滤波处理;将处理后的BGC‑Argo数据和海洋表面卫星遥感数据进行时空匹配,构建深度学习数据集;构建包括特征聚焦阶段、特征提取阶段和CDOM浓度预测阶段的基于卷积神经网络的海洋次表层CDOM反演模型;对深度学习数据集进行划分,对基于卷积神经网络的海洋次表层CDOM反演模型进行训练、验证。本发明能够实现海洋次表层CDOM空间分布和垂直分布探测。

Patent Agency Ranking