基于特征选择和多尺度残差网络的匝间短路故障诊断方法

    公开(公告)号:CN119149984B

    公开(公告)日:2025-01-28

    申请号:CN202411640332.6

    申请日:2024-11-18

    Abstract: 本发明公开了一种基于特征选择和多尺度残差网络的匝间短路故障诊断方法,属于电机故障诊断领域,包括以下步骤:收集永磁同步电机内部绝缘故障中匝间短路故障条件下的永磁同步电机的电流信号,对电流信号进行预处理,得到训练集和测试集;构建永磁同步电机匝间短路故障诊断模型,采用训练集对永磁同步电机匝间短路故障诊断模型训练后,保留永磁同步电机匝间短路故障诊断模型的最优结构;将测试集放入训练好的永磁同步电机匝间短路故障诊断模型中进行特征学习,然后再输入Softmax分类器中进行故障诊断。本发明可自动、高效地提取电流信号中的微弱故障特征,摆脱了对传统信号处理技术和诊断经验的依赖,对含有噪声的信号具有良好的鲁棒性。

    基于特征选择和多尺度残差网络的匝间短路故障诊断方法

    公开(公告)号:CN119149984A

    公开(公告)日:2024-12-17

    申请号:CN202411640332.6

    申请日:2024-11-18

    Abstract: 本发明公开了一种基于特征选择和多尺度残差网络的匝间短路故障诊断方法,属于电机故障诊断领域,包括以下步骤:收集永磁同步电机内部绝缘故障中匝间短路故障条件下的永磁同步电机的电流信号,对电流信号进行预处理,得到训练集和测试集;构建永磁同步电机匝间短路故障诊断模型,采用训练集对永磁同步电机匝间短路故障诊断模型训练后,保留永磁同步电机匝间短路故障诊断模型的最优结构;将测试集放入训练好的永磁同步电机匝间短路故障诊断模型中进行特征学习,然后再输入Softmax分类器中进行故障诊断。本发明可自动、高效地提取电流信号中的微弱故障特征,摆脱了对传统信号处理技术和诊断经验的依赖,对含有噪声的信号具有良好的鲁棒性。

Patent Agency Ranking