-
公开(公告)号:CN116665766A
公开(公告)日:2023-08-29
申请号:CN202310258539.6
申请日:2023-03-16
Applicant: 湖南工业大学
IPC: G16B15/30 , G16B40/00 , G16C10/00 , G16C20/30 , G06N3/0464 , G06N3/0442
Abstract: 本发明公开了一种基于图扩张卷积策略的药物靶标结合亲和力预测模型及方法。本发明通过特征编码模块对药物分子及局部信息和靶标进行特征编码,分别通过采用图扩张卷积策略的多通道通用聚合网络模块、多层残差卷积网络的药物序列表示学习模块以及双向长短周期记忆网络的靶标序列表示学习模块分别对药物分子结构、药物分子的局部化学信息和靶标结构进行特征提取,最后将提取到的药物全局结构特征、药物局部化学特征和靶标序列特征级联后经过DTA预测模块进行药物靶标亲和力值预测,有效地提高了药物靶标结合亲和力预测精度和药物重定向过程的成功率,解决了药物靶标结合亲和力预测精度不高,药物重定向过程的成功率较低的问题。
-
公开(公告)号:CN116401027A
公开(公告)日:2023-07-07
申请号:CN202310325315.2
申请日:2023-03-29
Applicant: 湖南工业大学
Abstract: 本发明提供的一种基于预测完成时间矩阵的异构云中心任务调度方法,主要包括任务优先级阶段和虚拟机选择阶段,任务优先级阶段中的预测完成时间矩阵不仅能够在任务优先级阶段生成高效的任务调度列表,也能在虚拟机选择阶段正面影响任务对应的虚拟机分配,在满足优先级约束的条件下最小化工作流应用程序的调度长度。综上所述,本发明不仅考虑了直接后继任务的影响,也考虑了当前任务的重要性,任务和虚拟机的分配更加合理,本发明在不牺牲算法时间复杂度的前提下,实现工作流应用程序调度长度(最大完工时间)最小化。
-