基于深度学习的压缩感知图像重建算法

    公开(公告)号:CN109410114B

    公开(公告)日:2023-08-25

    申请号:CN201811092084.0

    申请日:2018-09-19

    Abstract: 本发明涉及一种基于深度学习的压缩感知图像重建算法,方法步骤如下:S1:对图像数据进行预处理,包括提取数据的灰度值和对图像进行分块;S2:对已经切分好的图像块进行测量,获得测量矩阵;S3:构建一个10层的深度压缩感知重建网络;S4:在深度学习框架中对10层网络进行训练;S5:在经过深度神经网络后,得到重建图像块,按照索引,对图像块按照原始行列值进行重排;S6:图像块经过重排得到重建图像后,选择BM3D去噪器对图片进行降噪处理,最终得到重建图像。本发明提供的压缩感知图像重建算法,大部分所耗时间在网络训练阶段,待网络训练完成后图像重建速度非常之快。本发明通过深度学习网络取代了传统重建算法,但依然拥有良好的重建精度。

    一种基于Attention多特征融合的图像压缩感知重建方法

    公开(公告)号:CN111667445A

    公开(公告)日:2020-09-15

    申请号:CN202010479734.8

    申请日:2020-05-29

    Abstract: 本发明提出了一种基于Attention的多特征融合的图像压缩感知重建方法,首先利用全卷积神经网络进行采样,然后使用反卷积网络进行初始重建。接下来利用不同扩张速率的扩张卷积得到不同感受野的扩张卷积核捕获图像中不同尺度的信息,得到多个尺度特征信息;在不同扩张速率的卷积通道,我们在每个通道加入了残差块,构成残差网络,通过残差网里多个跳连接来绕过大量的低频信息从而使网络专注于学习高频信息。在得到多个尺度特征信息后,使用Attention机制对输出的不同特征进行加权,更好的利用特征中更多有用信息,然后将多个特征信息进行融合完成图像的深度重建。本发明能有效提高采样效率,并使图像重建的质量得到大幅提升。

    基于多尺度小波变换与深度学习的图像压缩感知算法

    公开(公告)号:CN110084862A

    公开(公告)日:2019-08-02

    申请号:CN201910271763.2

    申请日:2019-04-04

    Abstract: 本发明公开了一种基于多尺度小波变换与深度学习的图像压缩感知算法,包括图像采集阶段,利用卷积层采样,得到的采样向量;初始重建阶段,采用Reshape操作初始重建向量中每1×1×B2重排为B×B的图像块;深度重建阶段,采用4个残差块来深度重建图像,通过中的初始重建图像块向量作为输入,输出大小为的深度重建图像;在得到深度重建图像块后,将图像块重排,最终得到重建图像,本发明在采样阶段,用卷积神经网络进行采样,提高采样效率;在重建端,利用卷积神经网络进行初始重建,进而利用残差网进行深度重建,并且本发明使用多个网络进行重建,显著提高重建性能;使用残差网在增加网络深度的同时,依然能保持高效的训练效果,进而获得更优的重建效果。

    基于多尺度小波变换与深度学习的图像压缩感知算法

    公开(公告)号:CN110084862B

    公开(公告)日:2022-11-15

    申请号:CN201910271763.2

    申请日:2019-04-04

    Abstract: 本发明公开了一种基于多尺度小波变换与深度学习的图像压缩感知算法,包括图像采集阶段,利用卷积层采样,得到的采样向量;初始重建阶段,采用Reshape操作初始重建向量中每1×1×B2重排为B×B的图像块;深度重建阶段,采用4个残差块来深度重建图像,通过中的初始重建图像块向量作为输入,输出大小为的深度重建图像;在得到深度重建图像块后,将图像块重排,最终得到重建图像,本发明在采样阶段,用卷积神经网络进行采样,提高采样效率;在重建端,利用卷积神经网络进行初始重建,进而利用残差网进行深度重建,并且本发明使用多个网络进行重建,显著提高重建性能;使用残差网在增加网络深度的同时,依然能保持高效的训练效果,进而获得更优的重建效果。

    一种基于Attention多特征融合的图像压缩感知重建方法

    公开(公告)号:CN111667445B

    公开(公告)日:2021-11-16

    申请号:CN202010479734.8

    申请日:2020-05-29

    Abstract: 本发明提出了一种基于Attention的多特征融合的图像压缩感知重建方法,首先利用全卷积神经网络进行采样,然后使用反卷积网络进行初始重建。接下来利用不同扩张速率的扩张卷积得到不同感受野的扩张卷积核捕获图像中不同尺度的信息,得到多个尺度特征信息;在不同扩张速率的卷积通道,我们在每个通道加入了残差块,构成残差网络,通过残差网里多个跳连接来绕过大量的低频信息从而使网络专注于学习高频信息。在得到多个尺度特征信息后,使用Attention机制对输出的不同特征进行加权,更好的利用特征中更多有用信息,然后将多个特征信息进行融合完成图像的深度重建。本发明能有效提高采样效率,并使图像重建的质量得到大幅提升。

    一种基于特征融合的密集残差网络图像压缩感知重建方法

    公开(公告)号:CN112150566A

    公开(公告)日:2020-12-29

    申请号:CN202011034288.6

    申请日:2020-09-27

    Abstract: 本发明涉及图像处理领域,主要涉及一种基于特征融合的密集残差网络图像压缩感知重建方法。应用多个密集残差块,提出了一个基于压缩感知算法的密集残差网络(RDNCS);每个密集残差块(RDB)包括连接记忆单元,局部特征融合单元,和局部残差学习单元。因此,本发明具有如下优点:1.在每一个RDB中,连接记忆单元机制、特征融合机制以及残差学习显著提高了图像重建质量。2.特征融合机制使得RDB网络获取的特征更加广泛与有效,自适应的获取重建所需的信息,而且降低了网络的特征图数量。

    基于深度学习的压缩感知图像重建算法

    公开(公告)号:CN109410114A

    公开(公告)日:2019-03-01

    申请号:CN201811092084.0

    申请日:2018-09-19

    CPC classification number: G06T1/0007 G06N3/0454 H03M7/3062

    Abstract: 本发明涉及一种基于深度学习的压缩感知图像重建算法,方法步骤如下:S1:对图像数据进行预处理,包括提取数据的灰度值和对图像进行分块;S2:对已经切分好的图像块进行测量,获得测量矩阵;S3:构建一个10层的深度压缩感知重建网络;S4:在深度学习框架中对10层网络进行训练;S5:在经过深度神经网络后,得到重建图像块,按照索引,对图像块按照原始行列值进行重排;S6:图像块经过重排得到重建图像后,选择BM3D去噪器对图片进行降噪处理,最终得到重建图像。本发明提供的压缩感知图像重建算法,大部分所耗时间在网络训练阶段,待网络训练完成后图像重建速度非常之快。本发明通过深度学习网络取代了传统重建算法,但依然拥有良好的重建精度。

Patent Agency Ranking