一种基于公理解释的类激活映射方法及装置

    公开(公告)号:CN114723733B

    公开(公告)日:2024-08-02

    申请号:CN202210450336.2

    申请日:2022-04-26

    Abstract: 本发明涉及一种基于公理解释的类激活映射方法及装置。首先将电气设备图像输入至已训练好的CNN模型,并提取模型中目标卷积层的特征图,同时获取目标类别分数,利用反向传播计算特征图相对于分数的梯度并对其优化处理,将优化后的梯度进行全局平均池化操作得到权重,最后将权重与特征图线性结合,并进行上采样和归一化操作得到初始类激活图;将得到的初始类激活图与输入图像点乘,对点乘后的图像进行平滑操作后再送入模型,经过softmax操作后生成N个分数,最终平均到一个分数;最后将得到的分数与初始类激活图相乘,ReLU操作后得到最后的类激活图。利用本发明生成的类激活图在清晰度、对象定位等方面有更好的视觉解释。

    一种基于梯度优化的类激活映射方法及装置

    公开(公告)号:CN114723049A

    公开(公告)日:2022-07-08

    申请号:CN202210450329.2

    申请日:2022-04-26

    Abstract: 本发明涉及一种基于梯度优化的类激活映射方法及装置。首先将电气设备图像输入至已训练好的卷积神经网络提取目标卷积层的特征图,同时网络输出能预测该图像类别的分数,利用反向传播计算特征图相对于分数的梯度;对得到的梯度进行优化处理,并使所有梯度都转换为正梯度后得到正相关梯度,将正相关梯度进行全局平均池化操作得到权重,最后将权重与特征图线性结合,并进行上采样和归一化操作得到初始类激活图;将得到的初始类激活图与输入图像点乘后再送入卷积神经网络,经过softmax操作后得到分数;将的分数与初始类激活图相乘,ReLU操作后得到最后的类激活图。本发明通过优化梯度使类激活图中显著性区域更加集中。

    一种基于梯度优化的类激活映射方法及装置

    公开(公告)号:CN114723049B

    公开(公告)日:2024-07-26

    申请号:CN202210450329.2

    申请日:2022-04-26

    Abstract: 本发明涉及一种基于梯度优化的类激活映射方法及装置。首先将电气设备图像输入至已训练好的卷积神经网络提取目标卷积层的特征图,同时网络输出能预测该图像类别的分数,利用反向传播计算特征图相对于分数的梯度;对得到的梯度进行优化处理,并使所有梯度都转换为正梯度后得到正相关梯度,将正相关梯度进行全局平均池化操作得到权重,最后将权重与特征图线性结合,并进行上采样和归一化操作得到初始类激活图;将得到的初始类激活图与输入图像点乘后再送入卷积神经网络,经过softmax操作后得到分数;将的分数与初始类激活图相乘,ReLU操作后得到最后的类激活图。本发明通过优化梯度使类激活图中显著性区域更加集中。

    一种基于公理解释的类激活映射方法及装置

    公开(公告)号:CN114723733A

    公开(公告)日:2022-07-08

    申请号:CN202210450336.2

    申请日:2022-04-26

    Abstract: 本发明涉及一种基于公理解释的类激活映射方法及装置。首先将电气设备图像输入至已训练好的CNN模型,并提取模型中目标卷积层的特征图,同时获取目标类别分数,利用反向传播计算特征图相对于分数的梯度并对其优化处理,将优化后的梯度进行全局平均池化操作得到权重,最后将权重与特征图线性结合,并进行上采样和归一化操作得到初始类激活图;将得到的初始类激活图与输入图像点乘,对点乘后的图像进行平滑操作后再送入模型,经过softmax操作后生成N个分数,最终平均到一个分数;最后将得到的分数与初始类激活图相乘,ReLU操作后得到最后的类激活图。利用本发明生成的类激活图在清晰度、对象定位等方面有更好的视觉解释。

    一种基于特征融合的密集残差网络图像压缩感知重建方法

    公开(公告)号:CN112150566A

    公开(公告)日:2020-12-29

    申请号:CN202011034288.6

    申请日:2020-09-27

    Abstract: 本发明涉及图像处理领域,主要涉及一种基于特征融合的密集残差网络图像压缩感知重建方法。应用多个密集残差块,提出了一个基于压缩感知算法的密集残差网络(RDNCS);每个密集残差块(RDB)包括连接记忆单元,局部特征融合单元,和局部残差学习单元。因此,本发明具有如下优点:1.在每一个RDB中,连接记忆单元机制、特征融合机制以及残差学习显著提高了图像重建质量。2.特征融合机制使得RDB网络获取的特征更加广泛与有效,自适应的获取重建所需的信息,而且降低了网络的特征图数量。

Patent Agency Ranking