-
公开(公告)号:CN109190379A
公开(公告)日:2019-01-11
申请号:CN201810878887.2
申请日:2018-08-03
Applicant: 清华大学
Abstract: 本发明实施例提供一种深度学习系统的漏洞检测方法和装置,其中方法包括:以最大化神经元覆盖率为导向,从待测深度学习系统中选取并激活若干个神经元;基于若干个神经元的张量表达式,以及待测深度学习系统的预测差的张量表达式,构建优化函数,并通过最大化优化函数获取若干个扰动;若所述若干个扰动中任一扰动满足预设条件,则基于该扰动获取检测样本,通过检测样本对待测深度学习系统的漏洞进行检测。本发明实施例提供的方法和装置,能够有效提升神经元覆盖率,使得检测过程更加完备,并且只需要一个深度学习系统,使得漏洞检测方法的应用场景更为广泛,此外,能够生成大量样本,提高了待测深度学习系统漏洞的检测效率。
-
公开(公告)号:CN109190379B
公开(公告)日:2020-05-19
申请号:CN201810878887.2
申请日:2018-08-03
Applicant: 清华大学
Abstract: 本发明实施例提供一种深度学习系统的漏洞检测方法和装置,其中方法包括:以最大化神经元覆盖率为导向,从待测深度学习系统中选取并激活若干个神经元;基于若干个神经元的张量表达式,以及待测深度学习系统的预测差的张量表达式,构建优化函数,并通过最大化优化函数获取若干个扰动;若所述若干个扰动中任一扰动满足预设条件,则基于该扰动获取检测样本,通过检测样本对待测深度学习系统的漏洞进行检测。本发明实施例提供的方法和装置,能够有效提升神经元覆盖率,使得检测过程更加完备,并且只需要一个深度学习系统,使得漏洞检测方法的应用场景更为广泛,此外,能够生成大量样本,提高了待测深度学习系统漏洞的检测效率。
-