基于门控自适应机制的病情转归预测方法和装置

    公开(公告)号:CN119694582A

    公开(公告)日:2025-03-25

    申请号:CN202411747695.X

    申请日:2024-12-02

    Applicant: 海南大学

    Abstract: 本申请涉及一种基于门控自适应机制的病情转归预测方法和装置。所述方法包括:获取慢病相关数据,根据慢病相关数据进行特征相关性分析,生成图数据并对图数据进行特征增强;基于图数据利用多层GAT混合模型进行预测,获取转归状态的时间序列;其中,多层GAT混合模型包括若干GATConv层、若干LSTMAggregation层和基于门控自适应的特征融合层;利用格拉姆角场将转归状态的时间序列输出为转归矩阵。本发明通过门控机制和注意力机制进行图级的全局特征融合,使多层GAT混合模型具有强大的图特征提取能力,能有效地提高了功率预测的精度和准确性。同时,使用上述多层GAT混合模型对各个患者的每个数据点进行转归预测,再采用格拉姆角场生成转归矩阵,便于进一步转归分析。

    一种基于MWMOTE与Res-BiGRU的心脏病预测方法

    公开(公告)号:CN117292842A

    公开(公告)日:2023-12-26

    申请号:CN202311200751.3

    申请日:2023-09-18

    Applicant: 海南大学

    Abstract: 本发明公开一种基于MWMOTE与Res‑BiGRU的心脏病预测方法,获得心脏病数据并进行预处理;采用MWMOTE技术处理生成人工数据并按预设比例划分为训练集和测试集;将训练集输入至Res‑BiGRU混合模型中进行训练,获得训练好的Res‑BiGRU混合模型,Res‑BiGRU混合模型包括Res‑CNN模块,用于基于初始输入数据提取数据空间特征;Res‑BiGRU模块,用于基于初始输入数据与数据空间特征提取数据时序特征;全连接层,用于输出预测结果;将测试集输入训练好的Res‑BiGRU混合模型中,采用评价指标对模型性能进行评估。本发明可有效提升了心脏病预测的性能指标。

Patent Agency Ranking