脑电信号自监督表示学习方法、系统和存储介质

    公开(公告)号:CN115005839B

    公开(公告)日:2025-02-25

    申请号:CN202210650772.4

    申请日:2022-06-09

    Abstract: 本发明提出了一种脑电信号自监督表示学习方法、系统和存储介质,属于信号处理和模式识别技术领域。利用编码器获得各时间段的多信道脑电信号数据的局部隐表示和自身上下文表示,并得到全局表示,计算瞬时时移预测任务的损失;根据各时间段的自身上下文表示得到段表示,预测不同时间段不同信道之间的相关概率,计算延迟时移预测任务的损失;对所述的各时间段的局部隐表示进行随机替换,根据替换后的新局部隐表示计算新自身上下文表示,根据新自身上下文表示预测各个原始信道对应的局部隐表示是否被其他信道替换,计算替换判别学习预测任务的损失;通过三个自监督任务,实现在脑电信号数据上的自监督表示学习,并将所学表示用于癫痫发作预测应用。

    脑电信号自监督表示学习方法、系统和存储介质

    公开(公告)号:CN115005839A

    公开(公告)日:2022-09-06

    申请号:CN202210650772.4

    申请日:2022-06-09

    Applicant: 浙江大学

    Abstract: 本发明提出了一种脑电信号自监督表示学习方法、系统和存储介质,属于信号处理和模式识别技术领域。利用编码器获得各时间段的多信道脑电信号数据的局部隐表示和自身上下文表示,并得到全局表示,计算瞬时时移预测任务的损失;根据各时间段的自身上下文表示得到段表示,预测不同时间段不同信道之间的相关概率,计算延迟时移预测任务的损失;对所述的各时间段的局部隐表示进行随机替换,根据替换后的新局部隐表示计算新自身上下文表示,根据新自身上下文表示预测各个原始信道对应的局部隐表示是否被其他信道替换,计算替换判别学习预测任务的损失;通过三个自监督任务,实现在脑电信号数据上的自监督表示学习,并将所学表示用于癫痫发作预测应用。

Patent Agency Ranking