基于双向编码结构的视频帧插值方法及系统

    公开(公告)号:CN117896526A

    公开(公告)日:2024-04-16

    申请号:CN202410059485.5

    申请日:2024-01-15

    Applicant: 济南大学

    Abstract: 本发明公开了基于双向编码结构的视频帧插值方法及系统;对第一尺度的输入帧图像进行预处理,得到第二和第三尺度的输入帧图像;将第一尺度的输入帧图像,输入到训练后的插值帧生成模型得到插值帧;模型对第一尺度的输入帧图像进行处理,得到第一尺度原始特征;对第一尺度原始特征进行预处理,得到第二、三尺度的原始特征;将第一、二和三尺度的原始特征,各自输入到对应的子网络,分别得到第一、二和三尺度原始特征上每个目标像素的像素级参数;基于每个尺度原始特征上每个目标像素的像素级参数和AdaCoF,对相应尺度的输入图像进行扭曲操作,得到相应尺度的扭曲帧图像;对多个尺度的扭曲帧图像进行合成操作得到插值帧。

    一种基于局部与全局知识蒸馏的驾驶分心检测方法及系统

    公开(公告)号:CN118447487A

    公开(公告)日:2024-08-06

    申请号:CN202410664375.1

    申请日:2024-05-27

    Applicant: 济南大学

    Abstract: 本发明提出了一种基于局部与全局知识蒸馏的驾驶分心检测方法及系统,通过在教师网络中引入分组卷积技术能够有效降低模型的参数量和计算复杂度,同时保持特征提取的有效性,使得模型在有限的计算资源下仍能提取丰富的特征信息。引入了注意力机制,能够使模型自适应地关注图像中与驾驶分心行为最相关的区域,显著提升了特征的表征能力,使得模型能够更加专注于关键信息;采用局部蒸馏和全局蒸馏相结合的方式,使得学生网络在推理阶段能够更全面地分析驾驶员行为,提高检测的准确性,使得学生网络能够在保持较低参数量的情况下达到与教师网络相近的检测精度。

    一种基于局部与全局知识蒸馏的驾驶分心检测方法及系统

    公开(公告)号:CN118447487B

    公开(公告)日:2025-03-18

    申请号:CN202410664375.1

    申请日:2024-05-27

    Applicant: 济南大学

    Abstract: 本发明提出了一种基于局部与全局知识蒸馏的驾驶分心检测方法及系统,通过在教师网络中引入分组卷积技术能够有效降低模型的参数量和计算复杂度,同时保持特征提取的有效性,使得模型在有限的计算资源下仍能提取丰富的特征信息。引入了注意力机制,能够使模型自适应地关注图像中与驾驶分心行为最相关的区域,显著提升了特征的表征能力,使得模型能够更加专注于关键信息;采用局部蒸馏和全局蒸馏相结合的方式,使得学生网络在推理阶段能够更全面地分析驾驶员行为,提高检测的准确性,使得学生网络能够在保持较低参数量的情况下达到与教师网络相近的检测精度。

    基于多尺度特征和混合3D网络的视频篡改检测方法及系统

    公开(公告)号:CN119445345A

    公开(公告)日:2025-02-14

    申请号:CN202411576849.3

    申请日:2024-11-06

    Applicant: 济南大学

    Abstract: 本发明提出了基于多尺度特征和混合3D网络的视频篡改检测方法及系统,涉及计算机视觉技术领域,包括:获取待检测的视频帧,并进行预处理;通过采样处理,获取不同尺度的特征图;将不同尺度的特征图输入至多尺度内部级联网络中,分别利用浅层特征提取模块、时间特征提取模块和空间特征提取模块提取浅层特征、时间特征和空间特征;将所述浅层特征、时间特征和空间特征采用多尺度特征的EMA融合模块进行特征融合,得到融合后的特征;利用融合后的特征进行视频帧检测,获取视频篡改检测结果;其中,所述在时间特征提取模块中引入混合三维卷积结构。本发明能够有效地识别视频帧是否经过了非法插入的篡改操作。

Patent Agency Ranking