一种基于卷积神经网络的太阳能电池板缺陷识别方法

    公开(公告)号:CN108631727B

    公开(公告)日:2019-08-09

    申请号:CN201810250676.4

    申请日:2018-03-26

    Abstract: 本发明涉及一种基于卷积神经网络的太阳能电池板缺陷识别方法,包括模型离线训练和在线检测两个阶段,将卷积神经网络模型应用于太阳能电池板的缺陷识别上,使用2个CNN模型递进地实现了缺陷检测和分类。首先使用CNN二分类模型区分合格与缺陷图像,然后使用CNN多分类模型,对二分类模型判定为缺陷的图像进行分类。CNN模型对电池板的各种缺陷类型,都是采用相同的处理流程,即通过迭代训练,快速而自动进行特征提取和特征分类。对于新缺陷类型,只需收集该缺陷类型的样本数据,添加到训练用的数据集中并对模型进行训练,就能够实现该缺陷类型的检测。能够以较高的准确率快速识别出存在缺陷的小电池板的位置,并对多种缺陷进行类别判定,适用性更广。

    一种基于卷积神经网络的太阳能电池板缺陷识别方法

    公开(公告)号:CN108631727A

    公开(公告)日:2018-10-09

    申请号:CN201810250676.4

    申请日:2018-03-26

    CPC classification number: H02S50/10

    Abstract: 本发明涉及一种基于卷积神经网络的太阳能电池板缺陷识别方法,包括模型离线训练和在线检测两个阶段,将卷积神经网络模型应用于太阳能电池板的缺陷识别上,使用2个CNN模型递进地实现了缺陷检测和分类。首先使用CNN二分类模型区分合格与缺陷图像,然后使用CNN多分类模型,对二分类模型判定为缺陷的图像进行分类。CNN模型对电池板的各种缺陷类型,都是采用相同的处理流程,即通过迭代训练,快速而自动进行特征提取和特征分类。对于新缺陷类型,只需收集该缺陷类型的样本数据,添加到训练用的数据集中并对模型进行训练,就能够实现该缺陷类型的检测。能够以较高的准确率快速识别出存在缺陷的小电池板的位置,并对多种缺陷进行类别判定,适用性更广。

Patent Agency Ranking