基于注意力的异构信息网络用户异常行为检测方法及系统

    公开(公告)号:CN115859793A

    公开(公告)日:2023-03-28

    申请号:CN202211479957.X

    申请日:2022-11-21

    Abstract: 本发明为一种基于注意力的异构信息网络用户异常行为检测方法及系统,首先将异构信息网络某段时间的历史交互数据转换为图数据,图数据的每个节点代表异型信息网络的一个组成对象,图数据的边反映了异构信息网络的组成对象间的联系;然后,基于图神经网络构建用户异常行为检测模型的目标函数,模型通过注意力聚合节点的邻居信息,推导得到节点属性表征的层间传播公式;最后,对各个节点属性表征进行梯度更新,直至所有节点属性表征收敛,得到各个节点属性表征;将各个节点属性表征通过多层感知机压缩为由各个节点的预测标签纵向堆叠而成的一维列向量,即用户异常行为检测结果。该方法利用注意力机制在消息传播过程中自动捕获网络中的所有元路径信息,提高了用户异常行为检测的准确率。

Patent Agency Ranking