-
公开(公告)号:CN111459051B
公开(公告)日:2023-05-12
申请号:CN202010331109.9
申请日:2020-04-23
Applicant: 河北工业大学
IPC: G05B17/02
Abstract: 本发明公开了一种带扰动观测器的离散终端滑模无模型控制方法。该方法将无模型自适应控制和离散终端滑模控制相结合,同时引入模糊RBF神经网络扰动观测器对外界干扰进行准确估计,增加了抗干扰性,能够解决非线性强、难建立精确数学模型的问题,既能避免复杂模型的建模不准确问题,同时加入离散终端滑模控制增强系统的鲁棒性和抗干扰性,比传统单一的无模型控制方法能更精准的跟踪理想期望曲线,而且与理想期望值的误差很小,实现高精度、高稳定和高适用性的控制,同时降低工业能耗。
-
公开(公告)号:CN112906673A
公开(公告)日:2021-06-04
申请号:CN202110381272.0
申请日:2021-04-09
Applicant: 河北工业大学
Abstract: 本发明为一种基于注意力机制的下肢运动意图预测方法,包括步骤1、获取下肢运动过程中的步态信号,对步态信号进行归一化处理,并划分训练集数据和测试集数据;步骤2、构建预测模型;预测模型包括输入模块、卷积神经网络模块、长短时记忆神经网络模块和注意力机制这四个部分,当输入模块、卷积神经网络模块、长短时记忆神经网络模块和注意力机制依次连接,注意力机制的输出结果再经过全连接层;步骤3、利用训练集数据对预测模型进行预训练,确定时间步长;再对预训练后的预测模型进行训练;步骤4、将训练后的预测模型用于下肢运动意图预测。该方法通过注意力机制对关节角度变化明显的位置进行放大处理,能够有效减小关节角度的预测误差。
-
公开(公告)号:CN112947071A
公开(公告)日:2021-06-11
申请号:CN202110117310.1
申请日:2021-01-28
Applicant: 河北工业大学
IPC: G05B13/04
Abstract: 本发明为一种基于Backstepping的下肢外骨骼控制方法,包括第一步、建立下肢外骨骼动力学模型,并转化为控制系统状态方程;第二步、设计Backstepping控制器;第三步、改进RBF扰动观测器,包括设计RBF扰动观测器和RBF神经网络自适应律;第四步、控制实施,使下肢外骨骼按照期望轨迹运动。该方法针对外部随机扰动,利用RBF神经网络的逼近特性,设计扰动观测器,对外部随机扰动进行逼近;针对RBF神经网络存在的网络逼近误差,进一步改进扰动观测器,引入辅助变量对网络逼近误差进行补偿,进而对外部随机扰动进行补偿,使对外部随机扰动的逼近更接近于真实值,降低了RBF神经网络的逼近误差。
-
公开(公告)号:CN112947071B
公开(公告)日:2022-04-01
申请号:CN202110117310.1
申请日:2021-01-28
Applicant: 河北工业大学
IPC: G05B13/04
Abstract: 本发明为一种基于Backstepping的下肢外骨骼控制方法,包括第一步、建立下肢外骨骼动力学模型,并转化为控制系统状态方程;第二步、设计Backstepping控制器;第三步、改进RBF扰动观测器,包括设计RBF扰动观测器和RBF神经网络自适应律;第四步、控制实施,使下肢外骨骼按照期望轨迹运动。该方法针对外部随机扰动,利用RBF神经网络的逼近特性,设计扰动观测器,对外部随机扰动进行逼近;针对RBF神经网络存在的网络逼近误差,进一步改进扰动观测器,引入辅助变量对网络逼近误差进行补偿,进而对外部随机扰动进行补偿,使对外部随机扰动的逼近更接近于真实值,降低了RBF神经网络的逼近误差。
-
公开(公告)号:CN111459051A
公开(公告)日:2020-07-28
申请号:CN202010331109.9
申请日:2020-04-23
Applicant: 河北工业大学
IPC: G05B17/02
Abstract: 本发明公开了一种带扰动观测器的离散终端滑模无模型控制方法。该方法将无模型自适应控制和离散终端滑模控制相结合,同时引入模糊RBF神经网络扰动观测器对外界干扰进行准确估计,增加了抗干扰性,能够解决非线性强、难建立精确数学模型的问题,既能避免复杂模型的建模不准确问题,同时加入离散终端滑模控制增强系统的鲁棒性和抗干扰性,比传统单一的无模型控制方法能更精准的跟踪理想期望曲线,而且与理想期望值的误差很小,实现高精度、高稳定和高适用性的控制,同时降低工业能耗。
-
-
-
-