基于多级时空特征和混合注意力网络的图像处理方法

    公开(公告)号:CN113782190B

    公开(公告)日:2023-12-15

    申请号:CN202111104505.9

    申请日:2021-09-22

    Abstract: 本发明为基于多级时空特征和混合注意力网络的抑郁症诊断方法,该方法包括以下内容:经过预处理的公开数据集变为成组的大小固定的图片,每个图片组对应一个视频序列,并对应一个抑郁分数;构建多级时空特征和混合注意力网络:以3D‑Resnet50网络相邻两层的输出作为输入,接入多级时空特征融合模块;所述多级时空特征融合模块包括时空特征调制子模块和特征融合子模块,时空特征调制子模块用于分别对相邻两层的输出都进行空间和时间调制;特征融合子模块用于对两个调制后的特征进行特征融合;多级时空特征经调整后连接一个混合注意力模块。该方法有效克服了单一网络深度在时间感受野和空间感受野局限的问题,实现针对抑郁患者的抑郁分数评估。

    基于风格转换和联合学习网络的域自适应行人再识别方法

    公开(公告)号:CN113723345B

    公开(公告)日:2023-11-14

    申请号:CN202111053962.X

    申请日:2021-09-09

    Abstract: 本发明为一种基于风格转换和联合学习网络的域自适应行人再识别方法,包括一、利用源域数据集对神经网络模型进行预训练;二、对目标域数据集中的行人图像进行风格转换;三、对每张行人图像进行预处理;四、将同一张行人图像采用两种预处理方式得到的图像输入到两个神经网络模型中提取特征,将两个高阶特征保存至两个存储器中;两个高阶特征进行聚类,得到伪标签;将同一张行人图像的两个高阶特征进行融合,融合后的高阶特征存储在联合存储器中;五、基于伪标签训练两个神经网络模型,基于联合存储器同步训练两个神经网络模型;六、重复第四、五步并在训练过程中计算两个神经网络模型的识别精度,将识别精度最佳的神经网络模型用于行人再识别。

    基于改进ConvMixer网络和动态焦点损失的视听情感分类方法

    公开(公告)号:CN115346261A

    公开(公告)日:2022-11-15

    申请号:CN202211015781.2

    申请日:2022-08-24

    Abstract: 本发明为基于改进ConvMixer网络和动态焦点损失的视听情感分类方法,包括1)采集表达情感的涉及人体面部区域的视频,从视频中提取图像序列和音频信号,将音频信号转换为梅尔倒谱系数谱图;2)构建结合邻接矩阵的ConvMixer网络,利用结合邻接矩阵的ConvMixer网络中提取视觉特征;3)利用ResNet34网络从梅尔倒谱系数谱图中提取听觉特征;4)构建特征融合与分类网络,用于将视觉特征和听觉特征进行融合,根据融合后的特征对每个视频进行情感分类;5)对网络进行训练,通过融合动态权重的焦点损失函数计算训练损失。克服了现有方法着重提取视频画面局部特征而忽略全局特征,损失函数无法使模型关注难分样本等问题。

    一种基于面部样式的人脸图像修复方法

    公开(公告)号:CN113298736B

    公开(公告)日:2022-03-04

    申请号:CN202110701430.6

    申请日:2021-06-24

    Abstract: 本发明为一种基于面部样式的人脸图像修复的方法,该方法包括以下内容:构建基于面部样式的生成对抗网络,包括基于面部样式的生成网络和PatchGAN判别器网络;基于面部样式的生成网络包括编码器‑解码器构成的主干修复子网络、能够根据人脸解析图提取各面部区域的局部面部区域样式和全局面部样式的面部样式提取子网络;所有局部面部区域样式和全局面部样式构成样式矩阵,生成各面部区域的仿射参数;编码器与解码器中的相应网络层之间存在跳跃连接,每个跳跃连接上嵌入一个面部区域修复模块。该方法能够有效的克服现有技术修复后的人脸图像中存在视觉伪影、面部结构细节模糊和面部语义不一致的问题,获得更加精确的修复效果。

    基于特征增强的车辆重识别方法

    公开(公告)号:CN114005096A

    公开(公告)日:2022-02-01

    申请号:CN202111317650.5

    申请日:2021-11-09

    Abstract: 本发明为基于特征增强的车辆重识别方法,该方法以构建具有空间注意力引导的自适应特征擦除模块和多感受野残差注意力模块的基于多注意力引导的特征增强网络,通过多感受野残差注意力在不同大小的感受野下帮助主干网络获得丰富的车辆外观特征,利用空间注意力引导的自适应特征擦除模块有选择性的擦除车辆最显著特征,使多注意力引导的特征增强网络的局部分支能够挖掘潜在局部特征,融合全局分支的全局特征和擦除分支的潜在局部特征完成车辆重识别过程。本发明方法不仅能够克服复杂的环境变化,如光照剧烈变化、障碍物遮挡而造成局部显著信息丢失的问题,而且能够满足在安全监管、智能交通系统中高效、快速的查找目标车辆的需求。

    视频图像序列中人脸微表情识别方法

    公开(公告)号:CN113496217A

    公开(公告)日:2021-10-12

    申请号:CN202110773121.X

    申请日:2021-07-08

    Abstract: 本发明为视频图像序列中人脸微表情识别方法,该识别方法包括以下内容:在微表情视频图像序列预处理之后,根据微表情的实际发生机理划分图像分块并获得微表情的浅层运动信息和深层形状信息融合特征,通过光流的共现关系和AU的发生机制构建自注意力图卷积网络的邻接矩阵A,以分块为节点、以邻接矩阵为边,构建自注意力图卷积网络,最后利用自注意力图卷积网络完成微表情的分类识别。本方法克服了现有微表情识别方法对光照噪声的鲁棒性差,特征信息提取的不充分,对微表情实际发生机理研究不深入而导致的微表情识别率低的缺陷。

    基于双生成对抗网络的两阶段表情动画生成方法

    公开(公告)号:CN111783658A

    公开(公告)日:2020-10-16

    申请号:CN202010621885.2

    申请日:2020-07-01

    Abstract: 本发明为基于双生成对抗网络的两阶段表情动画生成方法,该方法首先在第一阶段中利用表情迁移网络FaceGAN提取目标表情轮廓图中的表情特征,并将其迁移到源人脸,生成第一阶段预测图;第二阶段中利用细节生成网络FineGAN来作为补充丰富第一阶段预测图中的对表情变化贡献比较大的眼睛和嘴巴区域的细节,生成细粒度的第二阶段预测图并合成人脸视频动画,表情迁移网络FaceGAN及细节生成网络FineGAN均采用生成对抗网络实现。本申请提出两阶段生成对抗网络进行表情动画生成,第一阶段进行表情的转换,第二阶段进行图像细节的优化,通过掩模向量提取图像的指定区域,进行着重优化,同时结合局部判别器的使用,使重要部位生成效果更佳。

    一种图像显著性目标检测方法

    公开(公告)号:CN111209918A

    公开(公告)日:2020-05-29

    申请号:CN202010008328.3

    申请日:2020-01-06

    Abstract: 本发明是一种图像显著性目标检测方法,涉及图像分析的区域分割,是基于多图模型先验和短连接网络优化的图像显著性检测方法,该方法是对每张输入图像利用颜色和位置信息,计算KNN图模型和K正则图模型,得到在KNN图模型下的显著图S1和在K正则图模型下的显著图S2,再将KNN图模型和K正则图模型进行像素级别的融合,得到原图像的初始显著图S3,利用短连接网络优化初始显著图S3,获得原图像的最终的显著图Sfinal,完成图像显著性目标检测,克服了图像显著性目标检测的现有技术中存在的显著目标检测不完整、当前景背景颜色相似时算法检测不准确的缺陷。

Patent Agency Ranking