增材制造内部缺陷检测方法和装置

    公开(公告)号:CN119643579A

    公开(公告)日:2025-03-18

    申请号:CN202411710769.2

    申请日:2024-11-27

    Abstract: 本发明提供一种增材制造内部缺陷检测方法,包括以下步骤:获取增材制造件的三维点云数据;根据三维点云数据生成增材制造件的立体模型,通过立体模型搭建增材制造件的模拟算法,并通过增材制造件的模拟算法获取增材制造件的探测方位和探测路线变量;激光超声系统通过增材制造件的探测方位和探测路线变量输出激光超声信号,包括增材制造件的不同方位的信号图序列;搭建信号图序列的特性选取模型,并通过特性选取模型选取信号图序列的特性信息;搭建基于增材制造的内部缺陷检测模型,对内部缺陷检测模型进行训练,并将选取的信号图序列的特性信息引入训练后的内部缺陷检测模型中,以对增材制造件进行内部缺陷检测。

    一种基于深度学习的DR图像缺陷智能识别算法

    公开(公告)号:CN117788396A

    公开(公告)日:2024-03-29

    申请号:CN202311743135.2

    申请日:2023-12-18

    Abstract: 一种基于深度学习的DR图像缺陷智能识别算法,其分别取得各个DR图像值的余项队列,取得代表DR图像值相应的区间范畴中数值区别量与分散幅度的余项拓展因子,随后对DR图像值的区间数值分队列内数值的扰动状况执行解析,取得DR图像起伏参量;对DR图像值的区间数值分队列内数值的区别量状况执行解析,取得DR图像陡变参量,综合其解析值,取得DR图像值的机动平衡量;最终,可依据DR图像值的区间范畴内数值的平稳度幅度主动取得过滤数目大小,使得运用该过滤数目大小对各个DR图像值执行过滤处置的性能佳,改进型数值队列带有更好的防异常扰动性。

    储气井检测用井口电缆变向装置及检测方法

    公开(公告)号:CN108825206A

    公开(公告)日:2018-11-16

    申请号:CN201810604615.3

    申请日:2018-06-12

    Abstract: 本发明公开了一种储气井检测用井口电缆变向装置及检测方法,包括支撑机构和设置在支撑机构上的电缆变向机构。支撑机构包括上支撑板、连接件、下连接板和卡板,电缆变向机构包括第一滑轨、第二滑块和定滑轮,第一滑轨固定设置在上支撑板上表面,第一滑轨上滑动设置第二滑块,第二滑块顶部设置定滑轮,绕过定滑轮的电缆呈竖直状态,且位于第一通孔、连接件的空腔和下连接板的内圆孔轴线上。该装置结构相对简单,体积小、重量轻、便于搬运,对储气井附近的空间要求低,电缆与探头连接处不需反复拆装,操作非常方便,且检测精度高。替代了现有检测过程中的起重机和井口导程装置,降低了检测成本。

    一种基于红外热成像的III型储氢气瓶检测方法及装置

    公开(公告)号:CN119804555A

    公开(公告)日:2025-04-11

    申请号:CN202510309069.0

    申请日:2025-03-17

    Abstract: 本发明公开了一种基于红外热成像的III型储氢气瓶检测方法和装置,其中,该方法包括以下步骤:S1,采用红外热成像设备对放置在加热仓内的III型储氢气瓶的内胆进行扫描,并记录内胆当前的温度分布以获取第一热像图;S2,将第一热像图转换为第一数字图像,并获取第一数字图像中各最小图像单元的明度值;S3,根据第一数字图像中各最小图像单元的明度值对内胆进行损伤检测。根据本发明的基于红外热成像的III型储氢气瓶检测方法,采用红外热成像技术对III型储氢气瓶进行检测,不仅效率较高,而且无需与III型储氢气瓶接触,能够有效地避免对III型储氢气瓶内部材料造成损伤。

    一种基于神经网络的加氢站事故预测方法

    公开(公告)号:CN117745072B

    公开(公告)日:2024-06-14

    申请号:CN202311773216.7

    申请日:2023-12-21

    Abstract: 本发明公开了一种基于神经网络的加氢站事故预测方法,包括:S1,根据加氢站内目标部件的各项检测信息类型设置相应的第一信息采集策略和第二信息采集策略;S2,采用第一信息采集策略和第二信息采集策略采集加氢站内目标部件的各项检测信息;S3,将采用第一信息采集策略采集到的检测信息输入对应的神经网络,以对加氢站内目标部件进行事故预测;S4,在预测目标部件存在事故风险时,对采用第一信息采集策略和第二信息采集策略采集到的各项检测信息进行信息处理以判定事故地点以及事故起因。根据本发明的事故预测方法,结合采用多种信息采集策略采集到的目标部件在多个方面的检测信息来预测目标部件是否存在事故风险,大大提高了事故预测的准确性。

    一种嵌套式储气井的制作方法

    公开(公告)号:CN113701044B

    公开(公告)日:2023-03-31

    申请号:CN202111016851.1

    申请日:2021-08-31

    Abstract: 本发明公开了一种嵌套式储气井的制作方法,包括步骤一:在现有的储气井中安装内井筒,外井筒的井口焊接有第一法兰,使内井筒的井口伸出外井筒;步骤二:在内井筒的井口焊接第二法兰,第二法兰位于第一法兰上方,通过螺栓将第一法兰与第二法兰固定为一体;步骤三:在第二法兰上表面接井盖。本申请中将内井筒的井口伸出外井筒,在内井筒的井口焊接了第二法兰增加了第二法兰,并将第二法兰与第一法兰通过螺栓紧固为一体,即将外井筒与内井筒通过井口的法兰连接为整体。这样设计,即使内井筒在长时间内循环充气和放气、承受交变内压载荷的过程中,发生形变伸长和缩短,但是上部的两个法兰始终连为一体,大大提高了结构稳定性和安全性能。

    一种气瓶残余变形测量装置及检测方法

    公开(公告)号:CN114485444A

    公开(公告)日:2022-05-13

    申请号:CN202111660127.2

    申请日:2021-12-30

    Abstract: 本发明公开了一种气瓶残余变形测量装置及检测方法,该装置包括控制器、3D扫描仪和移动式设置在底座上的承载支架;承载支架包括能够沿X轴方向移动的第一支架和能够沿Y方向移动的第二支架,第二支架上固定设置有承载板;3D扫描仪设置于承载板上方,控制器和3D扫描仪之间通过导线电连接。本申请通过设置移动支架和D扫描仪,将待检测气瓶放置承载板上,且位于3D扫描仪下方,检测人员操作人机界面通过控制器控制第一支架沿X轴方向移动、第二支架沿Y方向移动,带动气瓶在XOY平面内移动,使3D扫描从多个角度对气瓶进行扫描,得出气瓶的测量体积,从而得出气瓶的残余变形量。采用该装置测量气瓶体积,检测方便,快捷,且检测精度非常高。

    一种基于超声相控阵的管道内检测系统及方法

    公开(公告)号:CN119269634A

    公开(公告)日:2025-01-07

    申请号:CN202411434139.7

    申请日:2024-10-15

    Abstract: 本发明涉及管道缺陷检测技术领域,尤其涉及一种基于超声相控阵的管道内检测系统及方法,该方法的步骤包括:采集管道内体积型缺陷的缺陷特征信息和缺陷分布信息;基于所述缺陷特征信息进行缺陷特征分析,确定缺陷影响系数;基于所述缺陷分布信息确定管道的缺陷聚集系数;通过所述缺陷影响系数和所述缺陷聚集系数确定管道缺陷指数,当所述管道缺陷指数大于预设缺陷阈值时,发出管道缺陷预警。本发明通过对管道内部的缺陷影响程度和缺陷聚集效应进行量化,提升了管道缺陷检测的准确性和可靠性。

    一种基于电容成像的缺陷检测方法及系统

    公开(公告)号:CN119000807A

    公开(公告)日:2024-11-22

    申请号:CN202411484299.2

    申请日:2024-10-23

    Abstract: 本发明涉及缺陷检测分析技术领域,尤其涉及一种基于电容成像的缺陷检测方法及系统,本发明根据历史材料属性数据构建复合材料属性分析模型,将材料属性数据导入复合材料属性分析模型中对复合材料的材料属性进行分析;根据历史粘接数据构建复合材料粘接层分析模型,将粘接数据导入复合材料粘接层分析模型中对复合材料粘接层进行分析;根据历史电容缺陷检测图像数据构建电容缺陷分析模型,将电容缺陷检测图像数据导入电容缺陷分析模型中对复合材料粘接层缺陷进行分析;构建待检测复合材料缺陷风险预测模型,对待检测复合材料的缺陷风险进行预测。能够优化复合材料生产流程,节约进行电容成像缺陷检测的成本,提高复合材料缺陷检测效率。

    常压不导磁罐车内部无损检测用小车平台

    公开(公告)号:CN113588910A

    公开(公告)日:2021-11-02

    申请号:CN202111014270.4

    申请日:2021-08-31

    Abstract: 本发明公开了一种常压不导磁罐车内部无损检测用小车平台,包括第一组件和第二组件;第一组件包括第一支架和第一磁性件;第二组件包括第二支架和第二磁性件,第一磁性件和第二磁性件的磁极不同;第一支架和第二支架上均设置有滚轮。检测时,将第一组件放置在罐体的外壁上,第一组件放入罐体,第一磁性件和第二磁性件相吸,使得第一组件和第二组件吸合在罐体壁的内外两侧,且位置相对应。将检测探头、摄像头等检测部件安装在第二支架上,通过控制罐体外壁上的第一组件移动,从而带动第二组件及检测部件在罐体内壁上根据需要移动,操作人员不用进入罐体中,很安全,且操作非常方便,很好的解决了常压不导磁罐车内部不易检测的技术问题。

Patent Agency Ranking