-
公开(公告)号:CN107256381A
公开(公告)日:2017-10-17
申请号:CN201710356566.1
申请日:2017-05-19
Applicant: 江苏大学
CPC classification number: G06K9/00288 , G06K9/6247 , G06K9/6276
Abstract: 本发明公开了一种双向模糊二维主成分分析的人脸识别方法,属于模式识别和人工智能领域。本发明方法利用基于矩阵的模糊二维主成分分析分别对人脸图像的行和列进行压缩,然后将压缩后的图像按列拉成图像向量,再用优化主成分分析提取图像向量的一组最优鉴别矢量而实现图像向量的压缩,最后用最近邻分类器进行分类。本发明是基于模糊二维主成分分析的人脸识别方法,在处理含噪声图像方面优于传统的二维主成分分析(2DPCA);此外,本发明从行和列两个方向对人脸图像进行压缩,压缩后图像更小,分类速度快;将压缩后的图像矩阵按列拉伸后再进行优化主成分分析的线性变换以实现向量的压缩,压缩更彻底,分类速度得到提高,具有高识别率。