基于密度分析和谱聚类的多扩展目标跟踪量测集划分方法

    公开(公告)号:CN103678949A

    公开(公告)日:2014-03-26

    申请号:CN201410009933.7

    申请日:2014-01-09

    Applicant: 江南大学

    Abstract: 本发明公开了一种基于密度分析和谱聚类的多扩展目标跟踪量测集划分方法,主要解决噪声环境下,多扩展目标数未知且变化的量测集难以划分、计算代价高的问题。该方法采用高斯核构建量测集的密度分布函数,然后根据密度直方图技术选取密度阈值,滤除量测集中的杂波量测,并引入近邻传播技术构建去杂波量测数据集的相似度矩阵,最后,对该相似度矩阵进行拉普拉斯谱变换,采用K均值算法对其进行聚类。本发明方法能够准确划分多扩展目标量测集,降低计算代价,以提高多扩展目标跟踪性能,满足实际工程系统的设计需求。

    基于Levy飞行的人工蜂群粒子群算法的云计算任务调度方法

    公开(公告)号:CN104793993A

    公开(公告)日:2015-07-22

    申请号:CN201510203345.1

    申请日:2015-04-24

    Applicant: 江南大学

    CPC classification number: Y02D10/24

    Abstract: 本发明公开了一种基于服务收益与功耗的云计算任务调度模型和基于Levy飞行的人工蜂群粒子群算法的云计算任务调度方法。针对绿色云计算的思路,提出了一种引入处理机功耗和任务调度收益的多QoS调度模型。并提出了一种基于Levy飞行的人工蜂群粒子群算法用来解决多QoS云计算任务调度的。在本发明中,在粒子群算法中引入人工蜂群局部搜索策略提高算法的局部搜索精度,并通过对全局最优值进行Levy操作来避免陷入局部最优,从而提高收敛精度。本发明所述的方法,能够有效的提高云计算任务调度收益,并能够降低用户等待时间和处理机功耗。

    基于Levy飞行的人工蜂群粒子群算法的云计算任务调度方法

    公开(公告)号:CN104793993B

    公开(公告)日:2017-11-17

    申请号:CN201510203345.1

    申请日:2015-04-24

    Applicant: 江南大学

    CPC classification number: Y02D10/24

    Abstract: 本发明公开了一种基于服务收益与功耗的云计算任务调度模型和基于Levy飞行的人工蜂群粒子群算法的云计算任务调度方法。针对绿色云计算的思路,提出了一种引入处理机功耗和任务调度收益的多QoS调度模型。并提出了一种基于Levy飞行的人工蜂群粒子群算法用来解决多QoS云计算任务调度的。在本发明中,在粒子群算法中引入人工蜂群局部搜索策略提高算法的局部搜索精度,并通过对全局最优值进行Levy操作来避免陷入局部最优,从而提高收敛精度。本发明所述的方法,能够有效的提高云计算任务调度收益,并能够降低用户等待时间和处理机功耗。

    基于密度分析和谱聚类的多扩展目标跟踪量测集划分方法

    公开(公告)号:CN103678949B

    公开(公告)日:2016-06-01

    申请号:CN201410009933.7

    申请日:2014-01-09

    Applicant: 江南大学

    Abstract: 本发明公开了一种基于密度分析和谱聚类的多扩展目标跟踪量测集划分方法,主要解决噪声环境下,多扩展目标数未知且变化的量测集难以划分、计算代价高的问题。该方法采用高斯核构建量测集的密度分布函数,然后根据密度直方图技术选取密度阈值,滤除量测集中的杂波量测,并引入近邻传播技术构建去杂波量测数据集的相似度矩阵,最后,对该相似度矩阵进行拉普拉斯谱变换,采用K均值算法对其进行聚类。本发明方法能够准确划分多扩展目标量测集,降低计算代价,以提高多扩展目标跟踪性能,满足实际工程系统的设计需求。

Patent Agency Ranking