-
公开(公告)号:CN114724046B
公开(公告)日:2025-01-10
申请号:CN202210314026.8
申请日:2022-03-28
Applicant: 武汉工程大学
IPC: G06V20/10 , G06V10/26 , G06V10/774 , G06V10/25 , G06V10/82
Abstract: 本发明提供一种光学遥感图像检测方法、装置以及存储介质,属于图像检测领域,方法包括:对多个光学遥感图像进行划分,得到多个光学遥感训练图像和多个光学遥感测试图像;分别对各个光学遥感训练图像进行标注,得到光学遥感标注图像;构建训练模型,根据多个光学遥感标注图像对训练模型进行模型训练,得到待测试图像检测模型;根据多个光学遥感测试图像对待测试图像检测模型进行测试,得到图像检测模型;通过图像检测模型对待测光学遥感图像进行检测,得到检测结果。本发明实现了对目标区域和背景区域的区分,能够更加精确地预测显著图,提高了光学遥感图像检测的准确率,降低了大量的劳动力和时间。
-
公开(公告)号:CN116664928A
公开(公告)日:2023-08-29
申请号:CN202310597334.0
申请日:2023-05-22
Applicant: 武汉工程大学
IPC: G06V10/764 , G06V10/26 , G06V10/32 , G06V10/40 , G06V10/77 , G06V10/80 , G06V10/82 , G06T7/00 , G06N3/0455 , G06N3/045 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于CNN与Transformer的糖尿病视网膜病变分级方法,包括以下步骤:导入原始图像数据集,将原始图像数据集划分为图像训练集和图像测试集;将图像训练集中的各个原始图像等分成若干个图像块,并生成不同粒度版本的打乱图像;通过残差网络和Swin‑Transformer建立糖尿病视网膜病变分级网络,采用渐进式策略训练糖尿病视网膜病变分级网络,得到串联阶段输出的多尺度多粒度的特征谱;定义分类损失函数和加权卡帕损失函数,并根据分类损失函数和加权卡帕损失函数构建损失层;利用图像训练集优化糖尿病视网膜病变分级网络;利用测试样本集对糖尿病视网膜病变分级网络进行测试。本发明能实现更准确的糖尿病视网膜病变分级,同时获得类别监督信息和有序监督信息。
-
公开(公告)号:CN114724046A
公开(公告)日:2022-07-08
申请号:CN202210314026.8
申请日:2022-03-28
Applicant: 武汉工程大学
Abstract: 本发明提供一种光学遥感图像检测方法、装置以及存储介质,属于图像检测领域,方法包括:对多个光学遥感图像进行划分,得到多个光学遥感训练图像和多个光学遥感测试图像;分别对各个光学遥感训练图像进行标注,得到光学遥感标注图像;构建训练模型,根据多个光学遥感标注图像对训练模型进行模型训练,得到待测试图像检测模型;根据多个光学遥感测试图像对待测试图像检测模型进行测试,得到图像检测模型;通过图像检测模型对待测光学遥感图像进行检测,得到检测结果。本发明实现了对目标区域和背景区域的区分,能够更加精确地预测显著图,提高了光学遥感图像检测的准确率,降低了大量的劳动力和时间。
-
公开(公告)号:CN116563517A
公开(公告)日:2023-08-08
申请号:CN202310383998.7
申请日:2023-04-10
Applicant: 武汉工程大学
IPC: G06V10/22 , G06V10/82 , G06V10/774 , G06V10/40 , G06V10/24 , G06N3/0475 , G06N3/08 , G06N3/0895
Abstract: 本发明提供一种弱监督目标定位方法及装置,属于目标定位领域,方法包括:S1:导入原始图像数据集,并将原始图像数据集划分为图像训练集和图像测试集;S2:将图像训练集中的各个原始图像进行多个角度旋转,得到各个原始图像的多个旋转图像;S3:对图像训练集中各个原始图像以及各个原始图像的各个旋转图像进行多通道特征提取,得到图像训练集中各个原始图像的特征谱组以及各个旋转图像的特征谱组;S4:根据图像训练集中各个原始图像的特征谱组中预设层特征谱以及各个旋转图像的特征谱组中预设层特征谱进行旋转预测总损失函数的计算,得到旋转预测总损失函数。本发明能够通过挖掘细粒度目标的互补性以及一致性,提高了弱监督定位的精度。
-
-
-