-
公开(公告)号:CN114821640B
公开(公告)日:2023-07-18
申请号:CN202210381360.5
申请日:2022-04-12
Applicant: 杭州电子科技大学 , 杭州电子科技大学信息工程学院
Abstract: 本发明公开了基于多流多尺度膨胀时空图卷积网络的骨架动作识别方法,包括:获取人体行为视频并预处理;从预处理后的视频中提取每帧图像的人体骨架数据形成骨架序列;填充骨架序列形成新的骨架序列;基于新的骨架序列获取每帧图像的二阶信息数据;基于二阶信息数据的类别和新的骨架序列分别对应建立训练集和标签;建立膨胀时空图卷积网络模型;将各类训练集和标签输入膨胀时空图卷积网络模型进行训练;将待识别的视频建立训练集后输入预训练好的模型,获取的融合结果即为最终预测结果。该方法可更好地获取网络不同层的语义信息,并在不增加计算量的情况下结合数量更多、特征更明显的关节数据实现人体行为预测,大大提高人体行为的预测精确度。
-
公开(公告)号:CN116524402A
公开(公告)日:2023-08-01
申请号:CN202310471296.4
申请日:2023-04-27
Applicant: 杭州电子科技大学信息工程学院 , 杭州电子科技大学
Abstract: 本发明公开了基于多头自注意力的多时间跨度上下文建模动作识别方法,包括:获取待识别视频并提取视频帧形成第一特征序列;对第一特征序列进行采样获得高频时间轴采样流和低频时间轴采样流;分别通过第一多时间跨度上下文聚合模块和数据增强模块对高频时间轴采样流进行特征提取,对应形成第一上下文提取特征和第一增强特征,并通过第二多时间跨度上下文聚合模块对低频时间轴采样流进行特征提取,形成第二上下文提取特征;将两个上下文提取特征进行相加平均后再与第一增强特征进行相加聚合,形成第一聚合特征;将第一聚合特征输入后处理模块获取动作识别结果。该方法能具有优秀的时序动作定位性能,动作识别准确率高。
-
公开(公告)号:CN114821640A
公开(公告)日:2022-07-29
申请号:CN202210381360.5
申请日:2022-04-12
Applicant: 杭州电子科技大学 , 杭州电子科技大学信息工程学院
Abstract: 本发明公开了基于多流多尺度膨胀时空图卷积网络的骨架动作识别方法,包括:获取人体行为视频并预处理;从预处理后的视频中提取每帧图像的人体骨架数据形成骨架序列;填充骨架序列形成新的骨架序列;基于新的骨架序列获取每帧图像的二阶信息数据;基于二阶信息数据的类别和新的骨架序列分别对应建立训练集和标签;建立膨胀时空图卷积网络模型;将各类训练集和标签输入膨胀时空图卷积网络模型进行训练;将待识别的视频建立训练集后输入预训练好的模型,获取的融合结果即为最终预测结果。该方法可更好地获取网络不同层的语义信息,并在不增加计算量的情况下结合数量更多、特征更明显的关节数据实现人体行为预测,大大提高人体行为的预测精确度。
-
公开(公告)号:CN114648722B
公开(公告)日:2023-07-18
申请号:CN202210362715.6
申请日:2022-04-07
Applicant: 杭州电子科技大学 , 杭州电子科技大学信息工程学院
IPC: G06V20/40 , G06V40/20 , G06V10/44 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于视频多路径时空特征网络的动作识别方法,包括:获取待识别的视频,根据帧率从视频中抽取若干张图像并对图像进行预处理;按照不同的采样率分别从预处理后的若干个图像中抽取不同数量的图像,形成多个图像序列;建立时空特征网络模型,时空特征网络模型包括多个特征提取模块,各图像序列一一对应输入至特征提取模块获取时空特征矩阵;将各特征提取模块输出的时空特征矩阵聚合,输出特征向量;利用分类器对特征向量进行分类检测,以概率最高的类别作为检测结果。该方法能够大幅提升动作视频分类的准确度,并有助于增强网络模型对动作视频的理解,显著提升鲁棒性,从而能够应对现实生活中的复杂场景。
-
公开(公告)号:CN116012950A
公开(公告)日:2023-04-25
申请号:CN202310117822.7
申请日:2023-02-15
Applicant: 杭州电子科技大学信息工程学院 , 杭州电子科技大学
IPC: G06V40/20 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于多重心时空注意图卷积网络的骨架动作识别方法,包括:对预处理后的人体行为视频进行一阶骨骼信息提取并形成第一骨架序列;将第一骨架序列转换为第二骨架序列;获取每帧图像的二阶骨骼信息;根据四种流态数据对应建立四类训练集和标签;建立多重心时空注意图卷积网络模型并训练;将待识别的人体行为视频输入训练好的模型,获取对应的初始预测结果和softmax分数;根据初始预测结果利用多重心特征融合单元计算对应权重系数;采用特征融合模块将各softmax分数进行加权融合获得骨架动作识别结果。该方法可结合数量更多、特征更明显的关节数据以实现人体行为预测,提高预测精确度。
-
公开(公告)号:CN114821420B
公开(公告)日:2023-07-25
申请号:CN202210448080.1
申请日:2022-04-26
Applicant: 杭州电子科技大学 , 杭州电子科技大学信息工程学院
IPC: G06V20/40 , G06V10/44 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于多时间分辨率时态语义聚合网络的时序动作定位方法,包括:获取原始视频并进行预处理,预处理为从原始视频中提取特征序列并注释标签;复制特征序列为N'份,并通过卷积层将复制后的各特征序列的时间分辨率调整为不同值;建立多时间分辨率时态语义聚合网络;将时间分辨率调整后的各特征序列一一对应输入子模块,采用分类损失和回归损失训练多时间分辨率时态语义聚合网络;利用训练好的多时间分辨率时态语义聚合网络预测待识别视频的动作开始时间、动作结束时间、动作种类和置信分数。该方法可获得更灵活更具鲁棒性的上下文关系表达,并大大提高计算能力和时序动作定位的准确性。
-
公开(公告)号:CN116012950B
公开(公告)日:2023-06-30
申请号:CN202310117822.7
申请日:2023-02-15
Applicant: 杭州电子科技大学信息工程学院 , 杭州电子科技大学
IPC: G06V40/20 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于多重心时空注意图卷积网络的骨架动作识别方法,包括:对预处理后的人体行为视频进行一阶骨骼信息提取并形成第一骨架序列;将第一骨架序列转换为第二骨架序列;获取每帧图像的二阶骨骼信息;根据四种流态数据对应建立四类训练集和标签;建立多重心时空注意图卷积网络模型并训练;将待识别的人体行为视频输入训练好的模型,获取对应的初始预测结果和softmax分数;根据初始预测结果利用多重心特征融合单元计算对应权重系数;采用特征融合模块将各softmax分数进行加权融合获得骨架动作识别结果。该方法可结合数量更多、特征更明显的关节数据以实现人体行为预测,提高预测精确度。
-
公开(公告)号:CN114821420A
公开(公告)日:2022-07-29
申请号:CN202210448080.1
申请日:2022-04-26
Applicant: 杭州电子科技大学 , 杭州电子科技大学信息工程学院
Abstract: 本发明公开了一种基于多时间分辨率时态语义聚合网络的时序动作定位方法,包括:获取原始视频并进行预处理,预处理为从原始视频中提取特征序列并注释标签;复制特征序列为N'份,并通过卷积层将复制后的各特征序列的时间分辨率调整为不同值;建立多时间分辨率时态语义聚合网络;将时间分辨率调整后的各特征序列一一对应输入子模块,采用分类损失和回归损失训练多时间分辨率时态语义聚合网络;利用训练好的多时间分辨率时态语义聚合网络预测待识别视频的动作开始时间、动作结束时间、动作种类和置信分数。该方法可获得更灵活更具鲁棒性的上下文关系表达,并大大提高计算能力和时序动作定位的准确性。
-
公开(公告)号:CN114648722A
公开(公告)日:2022-06-21
申请号:CN202210362715.6
申请日:2022-04-07
Applicant: 杭州电子科技大学 , 杭州电子科技大学信息工程学院
Abstract: 本发明公开了一种基于视频多路径时空特征网络的动作识别方法,包括:获取待识别的视频,根据帧率从视频中抽取若干张图像并对图像进行预处理;按照不同的采样率分别从预处理后的若干个图像中抽取不同数量的图像,形成多个图像序列;建立时空特征网络模型,时空特征网络模型包括多个特征提取模块,各图像序列一一对应输入至特征提取模块获取时空特征矩阵;将各特征提取模块输出的时空特征矩阵聚合,输出特征向量;利用分类器对特征向量进行分类检测,以概率最高的类别作为检测结果。该方法能够大幅提升动作视频分类的准确度,并有助于增强网络模型对动作视频的理解,显著提升鲁棒性,从而能够应对现实生活中的复杂场景。
-
-
-
-
-
-
-
-