-
公开(公告)号:CN116012950A
公开(公告)日:2023-04-25
申请号:CN202310117822.7
申请日:2023-02-15
Applicant: 杭州电子科技大学信息工程学院 , 杭州电子科技大学
IPC: G06V40/20 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于多重心时空注意图卷积网络的骨架动作识别方法,包括:对预处理后的人体行为视频进行一阶骨骼信息提取并形成第一骨架序列;将第一骨架序列转换为第二骨架序列;获取每帧图像的二阶骨骼信息;根据四种流态数据对应建立四类训练集和标签;建立多重心时空注意图卷积网络模型并训练;将待识别的人体行为视频输入训练好的模型,获取对应的初始预测结果和softmax分数;根据初始预测结果利用多重心特征融合单元计算对应权重系数;采用特征融合模块将各softmax分数进行加权融合获得骨架动作识别结果。该方法可结合数量更多、特征更明显的关节数据以实现人体行为预测,提高预测精确度。
-
公开(公告)号:CN116012950B
公开(公告)日:2023-06-30
申请号:CN202310117822.7
申请日:2023-02-15
Applicant: 杭州电子科技大学信息工程学院 , 杭州电子科技大学
IPC: G06V40/20 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于多重心时空注意图卷积网络的骨架动作识别方法,包括:对预处理后的人体行为视频进行一阶骨骼信息提取并形成第一骨架序列;将第一骨架序列转换为第二骨架序列;获取每帧图像的二阶骨骼信息;根据四种流态数据对应建立四类训练集和标签;建立多重心时空注意图卷积网络模型并训练;将待识别的人体行为视频输入训练好的模型,获取对应的初始预测结果和softmax分数;根据初始预测结果利用多重心特征融合单元计算对应权重系数;采用特征融合模块将各softmax分数进行加权融合获得骨架动作识别结果。该方法可结合数量更多、特征更明显的关节数据以实现人体行为预测,提高预测精确度。
-