-
公开(公告)号:CN117793538A
公开(公告)日:2024-03-29
申请号:CN202410200816.2
申请日:2024-02-23
Applicant: 北京理工大学 , 杭州电子科技大学丽水研究院 , 杭州电子科技大学
Abstract: 本申请提出了一种图像自动曝光矫正与增强方法及装置,该方法包括:根据正常曝光Raw图像数据中的线性关系,构造有监督的异常曝光图像数据集;构建全局亮度调整网络与频率增强重建网络,将异常曝光图像数据集输入全局亮度调整网络,得到亮度矫正图像,将亮度矫正图像输入频率增强重建网络,得到矫正增强图像;基于矫正增强图像与正常曝光Raw图像数据,计算损失值,并基于损失值对其网络模型参数进行优化,得到优化模型;将其他图像输入优化模型得到优化图像,根据图像质量评价指标评价优化图像,得到客观评估指标。基于本申请提出的方案,能够对原始Raw图像数据达到自动曝光矫正与增强的效果,从而应对复杂环境下成像质量低的问题。
-
公开(公告)号:CN118967450B
公开(公告)日:2025-05-06
申请号:CN202411452810.0
申请日:2024-10-17
Applicant: 北京理工大学 , 杭州电子科技大学丽水研究院 , 杭州电子科技大学
IPC: G06T3/4053 , G06T5/50
Abstract: 本发明涉及一种基于结构信息的不对齐多源数据的光谱图像融合超分方法及系统,属于计算摄像技术领域。本发明首先使用梯度计算对输入的高光谱和多光谱图像提取梯度图,再使用纹理编码器和结构编码器分别对图像和梯度图进行编码,获取纹理特征金字塔和结构特征金字塔,然后使用结构注意力引导的特征融合对齐模块在各个层级进行特征融合获得对齐特征,最后使用解码器网络对对齐特征进行解码,生成高分辨率高光谱图像。本发明使特征对齐效果更加鲁棒,使超分辨率效果更好,在真实数据集和仿真数据集的各个倍率的超分任务中均取得很好的结果,在高倍率超分任务中具有优势,易于推广。
-
公开(公告)号:CN117793538B
公开(公告)日:2024-06-25
申请号:CN202410200816.2
申请日:2024-02-23
Applicant: 北京理工大学 , 杭州电子科技大学丽水研究院 , 杭州电子科技大学
Abstract: 本申请提出了一种图像自动曝光矫正与增强方法及装置,该方法包括:根据正常曝光Raw图像数据中的线性关系,构造有监督的异常曝光图像数据集;构建全局亮度调整网络与频率增强重建网络,将异常曝光图像数据集输入全局亮度调整网络,得到亮度矫正图像,将亮度矫正图像输入频率增强重建网络,得到矫正增强图像;基于矫正增强图像与正常曝光Raw图像数据,计算损失值,并基于损失值对其网络模型参数进行优化,得到优化模型;将其他图像输入优化模型得到优化图像,根据图像质量评价指标评价优化图像,得到客观评估指标。基于本申请提出的方案,能够对原始Raw图像数据达到自动曝光矫正与增强的效果,从而应对复杂环境下成像质量低的问题。
-
公开(公告)号:CN117029858A
公开(公告)日:2023-11-10
申请号:CN202311052725.0
申请日:2023-08-21
Applicant: 杭州电子科技大学丽水研究院
IPC: G01C21/34
Abstract: 本发明公开了一种基于改进式蚁群算法的外卖员路径规划系统及方法。本发明系统包括订单信息授权模块、外卖员当前位置获取模块、商家及配送位置获取模块、路况匹配模块、外卖员配送路径规划模块和外卖员配送路径导航模块。相比于外卖员自行寻找配送路径,本发明专利提出的外卖员路径规划系统通过小程序获取外卖员订单信息,系统将外卖员位置以及商家位置和订单配送位置与地图上的路况信息进行对应,并且通过改进式遗传算法对外卖员配送路径进行规划。同时系统及时更新订单信息,及时对路径进行重新规划,提高了外卖员配送的效率。
-
公开(公告)号:CN117217991A
公开(公告)日:2023-12-12
申请号:CN202311026041.3
申请日:2023-08-15
Applicant: 杭州电子科技大学丽水研究院
Inventor: 颜成钢 , 张文豪 , 陈雨中 , 魏宇鑫 , 汪奇挺 , 傅晟 , 付莹 , 郭雨晨 , 赵思成 , 孙垚棋 , 朱尊杰 , 高宇涵 , 王鸿奎 , 赵治栋 , 殷海兵 , 王帅 , 张继勇 , 李宗鹏 , 丁贵广
IPC: G06T3/40 , G06N3/0455 , G06N3/08 , G06N5/046
Abstract: 本发明公开了一种基于TensorRT的视频超分推理方法及装置,首先对视频超分网络进行训练;然后对网络算子进行分析,对常用算子进行整理,对不支持算子进行编写,对于可优化算子做算子融合;最后对于完整的视频超分网络结构,使用TensorRT编写并生成序列化引擎进行推理。本发明提出了视频超分推理落地的新方法,即是使用TensorRT该推理框架进行部署和加速,建立常用算子库将TensorRT算子和Pytorch算子进行对齐,优化部署过程,并能够比在训练框架下的推理有更好的速度和更低的显存占用。
-
公开(公告)号:CN118967450A
公开(公告)日:2024-11-15
申请号:CN202411452810.0
申请日:2024-10-17
Applicant: 北京理工大学 , 杭州电子科技大学丽水研究院 , 杭州电子科技大学
IPC: G06T3/4053 , G06T5/50
Abstract: 本发明涉及一种基于结构信息的不对齐多源数据的光谱图像融合超分方法及系统,属于计算摄像技术领域。本发明首先使用梯度计算对输入的高光谱和多光谱图像提取梯度图,再使用纹理编码器和结构编码器分别对图像和梯度图进行编码,获取纹理特征金字塔和结构特征金字塔,然后使用结构注意力引导的特征融合对齐模块在各个层级进行特征融合获得对齐特征,最后使用解码器网络对对齐特征进行解码,生成高分辨率高光谱图像。本发明使特征对齐效果更加鲁棒,使超分辨率效果更好,在真实数据集和仿真数据集的各个倍率的超分任务中均取得很好的结果,在高倍率超分任务中具有优势,易于推广。
-
公开(公告)号:CN117274855A
公开(公告)日:2023-12-22
申请号:CN202311058507.8
申请日:2023-08-22
Applicant: 杭州电子科技大学丽水研究院
Inventor: 颜成钢 , 金裕达 , 郭雨晨 , 赵思成 , 孙垚棋 , 朱尊杰 , 高宇涵 , 王鸿奎 , 赵治栋 , 殷海兵 , 王帅 , 张继勇 , 李宗鹏 , 丁贵广 , 付莹 , 李晓林 , 沙雏淋
IPC: G06V20/40 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了一种基于多维度信息交互的视频特征提取方法,首先进行数据集获取,采用现有的视频分类数据集;构建基于多维度信息交互的视频特征提取网络,包括前缀卷积网络、时空可分离编码器和视频分类器;之后构建损失函数,最后根据获取的数据集对构建的基于多维度信息交互的视频特征提取网络进行训练。本发明将时序信息交互与空间信息交互相结合,弥补了两者不能共存的短板。使用前缀卷积网络以及时间空间可分离注意力机制,减少了大量的算力开销。
-
-
-
-
-
-