-
公开(公告)号:CN112949369A
公开(公告)日:2021-06-11
申请号:CN202011284824.8
申请日:2020-11-17
Applicant: 杭州电子科技大学
IPC: G06K9/00 , G06K9/62 , G06N3/04 , G06F16/532
Abstract: 本发明公开了一种基于人机协同的海量人脸图库检索方法。计算机视觉提取的低级特征与人类视觉捕获的高级语义特征有所差距,所以计算机视觉检索结果远不能达到人的期望。人脸图像在低级轮廓特征上差距不大,仅依靠计算机视觉很难对相似人脸进行区分。本发明如下:1、建立图库;2、用人看人像图产生的脑电信号训练EEG分类模型;3、使用EEG分类模型在线迭代,从图像数据中检索出被试者需要的目标图像。本发明中的人脸图片检索方法与传统人脸检索方法不同,通过将人脑强大的认知能力与计算机的快速计算能力、海量存储能力相结合,实现了快速,准确,鲁棒的海量人脸图片检索,具有显著的应用价值。
-
公开(公告)号:CN112949369B
公开(公告)日:2024-02-09
申请号:CN202011284824.8
申请日:2020-11-17
Applicant: 杭州电子科技大学
IPC: G06F16/53 , G06F16/58 , G06V40/16 , G06V20/52 , G06V20/40 , G06V10/774 , G06N3/04 , G06F16/532
Abstract: 本发明公开了一种基于人机协同的海量人脸图库检索方法。计算机视觉提取的低级特征与人类视觉捕获的高级语义特征有所差距,所以计算机视觉检索结果远不能达到人的期望。人脸图像在低级轮廓特征上差距不大,仅依靠计算机视觉很难对相似人脸进行区分。本发明如下:1、建立图库;2、用人看人像图产生的脑电信号训练EEG分类模型;3、使用EEG分类模型在线迭代,从图像数据中检索出被试者需要的目标图像。本发明中的人脸图片检索方法与传统人脸检索方法不同,通过将人脑强大的认知能力与计算机的快速计算能力、海量存储能力相结合,实现了快速,准确,鲁棒的海量人脸图片检索,具有显著的应用价值。
-
公开(公告)号:CN114594461A
公开(公告)日:2022-06-07
申请号:CN202210246394.3
申请日:2022-03-14
Applicant: 杭州电子科技大学
Abstract: 本发明公开了基于注意力感知与缩放因子剪枝的声呐目标检测方法。该检测方法的过程为:步骤1、搭建注意力感知目标检测网络,注意力感知目标检测网络包括注意力感知网络、路径聚合增强网络和多尺度联合预测网络。步骤2、使用声呐数据集对步骤1所得的注意力感知网络进行训练。步骤3、使用缩放因子衡量通道的重要性并进行模型剪枝。步骤4、使用步骤3得到的剪枝模型对声呐目标进行回归与定位。本发明中针对深度学习目标检测算法应用于声呐图像目标检测时,对细长、细小目标的定位回归精度不佳及算法自身参数量大、运算复杂的问题进行改进。通过注意力感知模块获得目标的短距离形变感知与长距离依赖感知,并通过缩放因子对模型进行轻量化处理。
-
-