一种基于人机协同的海量人脸图库检索方法

    公开(公告)号:CN112949369B

    公开(公告)日:2024-02-09

    申请号:CN202011284824.8

    申请日:2020-11-17

    Abstract: 本发明公开了一种基于人机协同的海量人脸图库检索方法。计算机视觉提取的低级特征与人类视觉捕获的高级语义特征有所差距,所以计算机视觉检索结果远不能达到人的期望。人脸图像在低级轮廓特征上差距不大,仅依靠计算机视觉很难对相似人脸进行区分。本发明如下:1、建立图库;2、用人看人像图产生的脑电信号训练EEG分类模型;3、使用EEG分类模型在线迭代,从图像数据中检索出被试者需要的目标图像。本发明中的人脸图片检索方法与传统人脸检索方法不同,通过将人脑强大的认知能力与计算机的快速计算能力、海量存储能力相结合,实现了快速,准确,鲁棒的海量人脸图片检索,具有显著的应用价值。

    一种基于人机协同的海量人脸图库检索方法

    公开(公告)号:CN112949369A

    公开(公告)日:2021-06-11

    申请号:CN202011284824.8

    申请日:2020-11-17

    Abstract: 本发明公开了一种基于人机协同的海量人脸图库检索方法。计算机视觉提取的低级特征与人类视觉捕获的高级语义特征有所差距,所以计算机视觉检索结果远不能达到人的期望。人脸图像在低级轮廓特征上差距不大,仅依靠计算机视觉很难对相似人脸进行区分。本发明如下:1、建立图库;2、用人看人像图产生的脑电信号训练EEG分类模型;3、使用EEG分类模型在线迭代,从图像数据中检索出被试者需要的目标图像。本发明中的人脸图片检索方法与传统人脸检索方法不同,通过将人脑强大的认知能力与计算机的快速计算能力、海量存储能力相结合,实现了快速,准确,鲁棒的海量人脸图片检索,具有显著的应用价值。

    一种基于最优窄频带特征融合的运动想象分类方法

    公开(公告)号:CN113011239B

    公开(公告)日:2024-02-09

    申请号:CN202011399435.X

    申请日:2020-12-02

    Abstract: 本发明公开一种基于最优窄频带特征融合的运动想象分类方法。本发明将四分类运动想象任务整合成4个二分类运动想象任务,然后对于每2类运动想象任务,均获取1个最优窄频带,总共得到4个最优窄频带;利用最优窄频带对每2类运动想象脑电信号进行带通滤波,然后对滤波后脑电信号进行特征提取,生成维度为32×7的结果矩阵;构建深度卷积神经网络模型,输入为32×7的结果矩阵,输出为脑电信号预测类别。本发明通过一种新颖的四叉搜索树自动确定最优窄频带,并通过共空间模式算法提取动态能量特征,最后将多个窄频带通过卷积神经网络进行特征融合,并实现多类别运动想象脑电信号的分类。

    一种基于最优窄频带特征融合的运动想象分类方法

    公开(公告)号:CN113011239A

    公开(公告)日:2021-06-22

    申请号:CN202011399435.X

    申请日:2020-12-02

    Abstract: 本发明公开一种基于最优窄频带特征融合的运动想象分类方法。本发明将四分类运动想象任务整合成4个二分类运动想象任务,然后对于每2类运动想象任务,均获取1个最优窄频带,总共得到4个最优窄频带;利用最优窄频带对每2类运动想象脑电信号进行带通滤波,然后对滤波后脑电信号进行特征提取,生成维度为32×7的结果矩阵;构建深度卷积神经网络模型,输入为32×7的结果矩阵,输出为脑电信号预测类别。本发明通过一种新颖的四叉搜索树自动确定最优窄频带,并通过共空间模式算法提取动态能量特征,最后将多个窄频带通过卷积神经网络进行特征融合,并实现多类别运动想象脑电信号的分类。

Patent Agency Ranking