一种基于退化先验的水下目标检测方法

    公开(公告)号:CN112597906B

    公开(公告)日:2024-02-02

    申请号:CN202011560980.2

    申请日:2020-12-25

    Abstract: 本发明公开了一种基于退化先验的水下目标检测方法。本发明方法针对目前基于卷积神经网络的通用目标检测算法在水下场景中检测精度下降严重这一现象而提出的。本发明是通过构建一个包含空间、通道注意力机制,并带有残差结构的特征增强模块对来自卷积神经网络浅层提取的水下图像退化特征做增强,从而提升通用目标检测算法在水下场景中的检测精度。本发明方法基于退化先验,将低质图像的退化特征尽可能映射到其对应清晰图像的特征,从可视化角度来看即,缩小两种特征的边距。本发明方法可以和目前主流的检测算法兼容,不需要专门设计网络结构。实验表明在少量数据时,检测效果尤为突出。

    一种基于车载诊断系统数据的路况分析预警方法

    公开(公告)号:CN108769104B

    公开(公告)日:2021-01-08

    申请号:CN201810319388.X

    申请日:2018-04-11

    Abstract: 本发明涉及一种基于车载诊断系统数据的路况分析预警方法。本发明通过读取车辆上安装的OBD样本数据来获取车辆行驶的数据,监听异常行为,然后上传到云端数据分析中心利用多种深度学习算法分析并学习用户的驾驶行为,对样本数据进行多次建模和评估,以判断当前道路的拥塞状况、是否容易产生急刹车等危险行为。在获取并分析了足够多的数据之后,系统会根据用户的驾驶行为二次建模,告知用户当前路况。本发明巧妙地避开了实地收集路况的环节。推测路况而不是耗费大量资金去收集路况信息,这既降低了项目的部署难度,也节约了资金消耗。具有智能分析和提醒功能,有限避免不良驾驶行为,躲避拥塞道路,预警事故多发地段。

    一种基于退化先验的水下目标检测方法

    公开(公告)号:CN112597906A

    公开(公告)日:2021-04-02

    申请号:CN202011560980.2

    申请日:2020-12-25

    Abstract: 本发明公开了一种基于退化先验的水下目标检测方法。本发明方法针对目前基于卷积神经网络的通用目标检测算法在水下场景中检测精度下降严重这一现象而提出的。本发明是通过构建一个包含空间、通道注意力机制,并带有残差结构的特征增强模块对来自卷积神经网络浅层提取的水下图像退化特征做增强,从而提升通用目标检测算法在水下场景中的检测精度。本发明方法基于退化先验,将低质图像的退化特征尽可能映射到其对应清晰图像的特征,从可视化角度来看即,缩小两种特征的边距。本发明方法可以和目前主流的检测算法兼容,不需要专门设计网络结构。实验表明在少量数据时,检测效果尤为突出。

    基于MLE和BIC的随机点模式参数估计方法

    公开(公告)号:CN112464173A

    公开(公告)日:2021-03-09

    申请号:CN202011526443.6

    申请日:2020-12-22

    Abstract: 本发明公开了基于MLE和BIC的随机点模式参数估计方法。本发明方法在基于随机点模式模型的框架下,构建多个复杂度不同的随机点模式模型,将对随机点模式模型参数的极大似然估计转化为分别对基数分布参数和特征分布参数的极大似然估计,并且用最大期望算法求取特征分布参数的极大似然估计值,计算每个模型关于训练数据的Bayes信息准则指标,确定备选模型中最优模型。本发明方法提升了模型对点模式数据的信息表达能力,使训练所得的最优模型对观测数据具有良好的拟合能力,并且保障了模型的泛化能力。本发明方法放宽了对于先验信息的要求,减少主观决策对于模型精度的影响。本发明方法有效提高了建模精度和降低了模型参数估计的复杂度。

    一种基于车载诊断系统数据的路况分析预警方法

    公开(公告)号:CN108769104A

    公开(公告)日:2018-11-06

    申请号:CN201810319388.X

    申请日:2018-04-11

    CPC classification number: H04L67/12 G06K9/6223 G06N3/084 G06N3/088 G08G1/0125

    Abstract: 本发明涉及一种基于车载诊断系统数据的路况分析预警方法。本发明通过读取车辆上安装的OBD样本数据来获取车辆行驶的数据,监听异常行为,然后上传到云端数据分析中心利用多种深度学习算法分析并学习用户的驾驶行为,对样本数据进行多次建模和评估,以判断当前道路的拥塞状况、是否容易产生急刹车等危险行为。在获取并分析了足够多的数据之后,系统会根据用户的驾驶行为二次建模,告知用户当前路况。本发明巧妙地避开了实地收集路况的环节。推测路况而不是耗费大量资金去收集路况信息,这既降低了项目的部署难度,也节约了资金消耗。具有智能分析和提醒功能,有限避免不良驾驶行为,躲避拥塞道路,预警事故多发地段。

Patent Agency Ranking