基于大语言模型的发电设备故障诊断方法

    公开(公告)号:CN119293232A

    公开(公告)日:2025-01-10

    申请号:CN202411293624.7

    申请日:2024-09-14

    Abstract: 本发明公开了基于大语言模型的发电设备故障诊断方法。本发明方法首先将专家知识库转化为由判据节点和边组成的故障知识库,通过知识库完成故障检索;使用基于文本职能分割的输入完成自然语言文本的合成,基于不同判据的计算类型构建提示词模板,促进大模型完成判据的计算推理任务;输入多维的设备状态监测时序数据,结合提示词模板自动生成当前时间下的提示词集合,输入提示词集合到大语言模型进行计算推理并生成设备的当前状态集;使用知识库对状态集进行检索获得故障诊断结果;进而设计一个可视化系统对大模型输出结果和故障诊断结果进行收集和可视化,为提示词模板构建提供输入和交互接口。本发明方法完成的故障诊断具备良好的实用性和扩展性。

    基于嵌入式学习的知识图谱的实体关系优化方法

    公开(公告)号:CN116910271A

    公开(公告)日:2023-10-20

    申请号:CN202310931506.3

    申请日:2023-07-27

    Abstract: 本发明公开了基于嵌入式学习的知识图谱的实体关系优化方法。本发明方法将原始知识图谱的三元组视作节点,并且添加了一组虚拟的关系节点;利用加权方法保证三元组线图中两个节点的三元组中的关系越相关,这些节点之间的边的权值就越高;将三元组通过深度学习模型所获的每一关系的置信度映射成每个三元组节点对于关系节点的权重,使得在拓扑结构中分布较远的三元组通过同享相似的关系而变得更加接近。在嵌入空间中,能够捕捉实体与语义的相似性以及推断三元组关系的正确性,为可信性低的三元组进行关系推荐,并结合人机交互的方式进行三元组的关系校正,使用校正后数据对深度学习模型进行迭代优化,提升了深度学习模型的关系抽取结果的质量。

Patent Agency Ranking