-
公开(公告)号:CN114145754B
公开(公告)日:2024-04-02
申请号:CN202111522093.0
申请日:2021-12-13
Applicant: 杭州电子科技大学
Abstract: 本发明公开了基于EEG交叉频率耦合的卒中脑功能评估装置。对卒中状态或健康状态被试在运动想象任务下的多通道脑电数据进行采集和预处理,提取刺激后的有效数据段;计算每个数据段的频段内以及频段间相相耦合关系;提取多尺度脑网络指标,包括全脑平均功能连接值、半球尺度上的平均功能连接值、特征路径长度、以及聚类系数指标,依据欧几里德距离评估脑功能状态。本发明突破了单频段脑网络分析的局限性,通过交叉频率脑网络进行有效的卒中脑功能评估。
-
公开(公告)号:CN113081001B
公开(公告)日:2022-04-01
申请号:CN202110390268.0
申请日:2021-04-12
Applicant: 杭州电子科技大学
Abstract: 本发明公开一种同步EEG‑fMRI脑电信号去BCG伪迹方法。对在普通环境和核磁共振环境下的睁眼、闭眼状态多通道头皮脑电信号进行采集和预处理,然对其进行数据分割,构建睁眼和闭眼状态数据集;利用上述睁眼和闭眼状态数据集分别进行去除BCG伪迹的睁眼网络模型和闭眼网络模型训练;该模型采用基于CycleGAN网络架构模型BCGGAN;BCGGAN包括CycleGAN、自编码器约束、中间特征约束。本发明在尽可能去除BCG伪迹的同时,能更好地有效保留脑电信息。
-
公开(公告)号:CN113627391A
公开(公告)日:2021-11-09
申请号:CN202111012095.5
申请日:2021-08-31
Applicant: 杭州电子科技大学
Abstract: 本发明公开一种考虑个体差异的跨模式脑电信号识别方法。将脑电信号数据格式统一为3D张量结构,然后将其划分为数据集输入到由分支网络构成的分类器中进行训练以分别提取背景特征和任务特征;利用上述提取到的背景特征计算不同被试之间的相似度,并对数据集中的数据进行筛选以避免差异程度大于阈值的脑电信号数据在训练过程中带来的模型负提升;最终将筛选后的数据集输入到多分支网络模型中进行训练。本发明在尽可能采集少量新被试数据的同时,能更好地提取不同被试上的特征以提升模型在跨被试任务中的性能。
-
公开(公告)号:CN113627391B
公开(公告)日:2024-03-12
申请号:CN202111012095.5
申请日:2021-08-31
Applicant: 杭州电子科技大学
IPC: G06F18/213 , G06F18/24 , G06F18/214 , G06F18/22 , G06N3/0464 , G06N3/045 , G06N3/082 , G06N3/09 , A61B5/369 , A61B5/372
Abstract: 本发明公开一种考虑个体差异的跨模式脑电信号识别方法。将脑电信号数据格式统一为3D张量结构,然后将其划分为数据集输入到由分支网络构成的分类器中进行训练以分别提取背景特征和任务特征;利用上述提取到的背景特征计算不同被试之间的相似度,并对数据集中的数据进行筛选以避免差异程度大于阈值的脑电信号数据在训练过程中带来的模型负提升;最终将筛选后的数据集输入到多分支网络模型中进行训练。本发明在尽可能采集少量新被试数据的同时,能更好地提取不同被试上的特征以提升模型在跨被试任务中的性能。
-
公开(公告)号:CN114145754A
公开(公告)日:2022-03-08
申请号:CN202111522093.0
申请日:2021-12-13
Applicant: 杭州电子科技大学
Abstract: 本发明公开了基于EEG交叉频率耦合的卒中脑功能评估装置。对卒中状态或健康状态被试在运动想象任务下的多通道脑电数据进行采集和预处理,提取刺激后的有效数据段;计算每个数据段的频段内以及频段间相相耦合关系;提取多尺度脑网络指标,包括全脑平均功能连接值、半球尺度上的平均功能连接值、特征路径长度、以及聚类系数指标,依据欧几里德距离评估脑功能状态。本发明突破了单频段脑网络分析的局限性,通过交叉频率脑网络进行有效的卒中脑功能评估。
-
公开(公告)号:CN113081001A
公开(公告)日:2021-07-09
申请号:CN202110390268.0
申请日:2021-04-12
Applicant: 杭州电子科技大学
Abstract: 本发明公开一种同步EEG‑fMRI脑电信号去BCG伪迹方法。对在普通环境和核磁共振环境下的睁眼、闭眼状态多通道头皮脑电信号进行采集和预处理,然对其进行数据分割,构建睁眼和闭眼状态数据集;利用上述睁眼和闭眼状态数据集分别进行去除BCG伪迹的睁眼网络模型和闭眼网络模型训练;该模型采用基于CycleGAN网络架构模型BCGGAN;BCGGAN包括CycleGAN、自编码器约束、中间特征约束。本发明在尽可能去除BCG伪迹的同时,能更好地有效保留脑电信息。
-
-
-
-
-