一种基于transformer的端到端动态作业车间调度模型

    公开(公告)号:CN115034653A

    公开(公告)日:2022-09-09

    申请号:CN202210738071.6

    申请日:2022-06-27

    Applicant: 暨南大学

    Abstract: 本发明涉及用于人工智能技术领域,具体涉及一种基于transformer的端到端动态作业车间调度模型,可以应用于不同尺寸的DJSSP(作业车间调度问题)。由特征提取模块、特征压缩模块、动作选择模块所构成。特征提取模块提取生产环境特征,并利用特征压缩模块将生产环境的特征进一步压缩成定长向量。然后,动作选择模块根据压缩后的能够反映生产环境状态的定长向量,实时选择简单优先级规则。本发明所建立的模型是Transformer在DJSSP中的第一个应用,不仅提高了工业调度的生产能力,而且为未来深度学习在DJSSP中的研究提供了范式。

    基于强化学习及遗传算法的柔性车间调度方法及模型

    公开(公告)号:CN114186749B

    公开(公告)日:2022-06-28

    申请号:CN202111546245.0

    申请日:2021-12-16

    Applicant: 暨南大学

    Abstract: 本发明提供了一种基于强化学习及遗传算法的柔性车间调度方法及模型,属于人工智能技术领域。根据柔性作业车间的特点,建立柔性作业车间调度模型;对遗传算法和基于熵的置信域优化强化学习算法中的基本参数进行初始化;利用基于熵的置信域优化算法更新遗传算法中的参数,并分别对参与交叉和变异的染色体种群进行交叉和变异操作,生成参与交叉和变异的新染色体种群;计算新种群中每个个体的适应度,确定基于熵的置信域优化算法中的状态参数,对新染色体种群执行遗传算法操作;反复执行上述迭代至截止,并输出结果。本发明将基于熵的置信域优化强化学习算法与遗传算法相结合,提高了柔性车间调度的性能,增强车间生产的鲁棒性,提高生产效率。

    一种基于transformer的端到端动态作业车间调度系统

    公开(公告)号:CN115034653B

    公开(公告)日:2023-07-11

    申请号:CN202210738071.6

    申请日:2022-06-27

    Applicant: 暨南大学

    Abstract: 本发明涉及用于人工智能技术领域,具体涉及一种基于transformer的端到端动态作业车间调度系统,可以应用于不同尺寸的DJSSP。由特征提取模块、特征压缩模块、动作选择模块所构成。特征提取模块提取生产环境特征,并利用特征压缩模块将生产环境的特征进一步压缩成定长向量。然后,动作选择模块根据压缩后的能够反映生产环境状态的定长向量,实时选择简单优先级规则。本发明所建立的系统是Transformer在DJSSP中的第一个应用,不仅提高了工业调度的生产能力,而且为未来深度学习在DJSSP中的研究提供了范式。

    基于熵优化安全强化学习的特种设备流程控制方法及系统

    公开(公告)号:CN114218867A

    公开(公告)日:2022-03-22

    申请号:CN202111563799.1

    申请日:2021-12-20

    Applicant: 暨南大学

    Abstract: 本发明提供了一种基于熵优化安全强化学习的特种设备流程控制方法及系统,属于人工智能技术领域。本发明根据特种设备生产的特点和实现的功能建立特种设备模型;提取生产线所需优化的参数,并定义符合特种设备生产特点的状态、动作、奖励函数、折扣因子、成本函数和策略模型,构建安全强化学习模型训练系统,采用马尔科夫决策过程进行训练;采用泛化优势估计算法实现基于Actor‑critic框架的熵优化安全强化学习算法,对马尔科夫决策过程中的每个策略设置上下边界,对特种设备进行流程控制。本发明采用的熵优化安全强化学习算法的流程控制,使得所构建的模型具有更好的泛化性,能够有效提高操作安全性、精准性。

    基于强化学习及遗传算法的柔性车间调度方法及模型

    公开(公告)号:CN114186749A

    公开(公告)日:2022-03-15

    申请号:CN202111546245.0

    申请日:2021-12-16

    Applicant: 暨南大学

    Abstract: 本发明提供了一种基于强化学习及遗传算法的柔性车间调度方法及模型,属于人工智能技术领域。根据柔性作业车间的特点,建立柔性作业车间调度模型;对遗传算法和基于熵的置信域优化强化学习算法中的基本参数进行初始化;利用基于熵的置信域优化算法更新遗传算法中的参数,并分别对参与交叉和变异的染色体种群进行交叉和变异操作,生成参与交叉和变异的新染色体种群;计算新种群中每个个体的适应度,确定基于熵的置信域优化算法中的状态参数,对新染色体种群执行遗传算法操作;反复执行上述迭代至截止,并输出结果。本发明将基于熵的置信域优化强化学习算法与遗传算法相结合,提高了柔性车间调度的性能,增强车间生产的鲁棒性,提高生产效率。

    基于强化学习和注意力机制的智能作业调度系统

    公开(公告)号:CN114580937B

    公开(公告)日:2023-04-28

    申请号:CN202210237299.7

    申请日:2022-03-10

    Applicant: 暨南大学

    Abstract: 本发明涉及用于数据处理方法技术领域,具体涉及一种基于强化学习和注意力机制的智能作业调度系统;包括:从给定的由机器矩阵MO和工时矩阵TO描述的调度实例,生成包含动态事件的由新的机器矩阵MO′和新的工时矩阵TO′描述的调度实例,并将其作为当前交互环境;调度系统与环境进行交互,收集经验并训练;提取特征,输入D3QPN得到当前状态下不同动作的Q值;根据Q值表进行作业调度。本发明通过注意力机制有效提取出关键信息,并使用强化学习算法选择最优的调度策略解决动态作业车间问题,以此解决实际智能制造中作业的动态变化问题,让智能调度作业系统在动态作业调度环境下依然拥有不错的性能。

    一种政务办公平台系统
    7.
    发明公开

    公开(公告)号:CN115758450A

    公开(公告)日:2023-03-07

    申请号:CN202211441976.3

    申请日:2022-11-17

    Abstract: 本发明公开了一种政务办公平台系统,包括系统支撑单元、技术支撑单元、业务支撑单元、工具集模块;所述系统支撑单元包括基础软件、操作系统、数据库和J2EE应用服务器,用于构成系统;所述技术支撑单元用于在系统支撑单元与应用系统之间建立技术、系统资源监控以及管理层,提供最佳编程模式、夹块不同技术平台之间开发和部署应用的速度;基于PKI技术,使用成熟的公开密钥机制,综合了密码技术、数字摘要技术、数字签名、虚拟专用网络、安全沙箱等多项安全技术以及一套成熟的安全管理机制来提供有效的信息安全服务,通过集成CA认证中心,使用户在办公平台中使用证书,完成用户认证、访问控制以及信息传输的机密性、完整性和抗抵赖性。

    一种基于MMDDPG算法的RGV小车调度方法及系统

    公开(公告)号:CN114936783B

    公开(公告)日:2023-01-17

    申请号:CN202210620696.2

    申请日:2022-06-02

    Applicant: 暨南大学

    Abstract: 本发明提供了一种基于MMDDPG算法的RGV小车调度方法及系统,属于人工智能技术领域。本发明基于银行家算法,并利用结合熵正则化器的MMDDPG算法对生产过程中的多辆RGV小车进行协同调度,其中对每个RGV小车的调度都考虑其他RGV小车的调度策略,同时,引入不可抢占式最低松弛度优先算法,以最大限度缩短任务等待响应的时间。本发明所提出的基于MMDDPG算法的RGV小车调度方法及系统考虑了多RGV小车存在时的RGV小车的协作关系,对多个RGV小车进行统一调度,保证了多个RGV小车整体效率的最大化。

    一种基于MMDDPG算法的RGV小车调度方法及系统

    公开(公告)号:CN114936783A

    公开(公告)日:2022-08-23

    申请号:CN202210620696.2

    申请日:2022-06-02

    Applicant: 暨南大学

    Abstract: 本发明提供了一种基于MMDDPG算法的RGV小车调度方法及系统,属于人工智能技术领域。本发明基于银行家算法,并利用结合熵正则化器的MMDDPG算法对生产过程中的多辆RGV小车进行协同调度,其中对每个RGV小车的调度都考虑其他RGV小车的调度策略,同时,引入不可抢占式最低松弛度优先算法,以最大限度缩短任务等待响应的时间。本发明所提出的基于MMDDPG算法的RGV小车调度方法及系统考虑了多RGV小车存在时的RGV小车的协作关系,对多个RGV小车进行统一调度,保证了多个RGV小车整体效率的最大化。

    基于熵优化安全强化学习的特种设备流程控制方法及系统

    公开(公告)号:CN114218867B

    公开(公告)日:2022-06-28

    申请号:CN202111563799.1

    申请日:2021-12-20

    Applicant: 暨南大学

    Abstract: 本发明提供了一种基于熵优化安全强化学习的特种设备流程控制方法及系统,属于人工智能技术领域。本发明根据特种设备生产的特点和实现的功能建立特种设备模型;提取生产线所需优化的参数,并定义符合特种设备生产特点的状态、动作、奖励函数、折扣因子、成本函数和策略模型,构建安全强化学习模型训练系统,采用马尔科夫决策过程进行训练;采用泛化优势估计算法实现基于Actor‑critic框架的熵优化安全强化学习算法,对马尔科夫决策过程中的每个策略设置上下边界,对特种设备进行流程控制。本发明采用的熵优化安全强化学习算法的流程控制,使得所构建的模型具有更好的泛化性,能够有效提高操作安全性、精准性。

Patent Agency Ranking