一种基于transformer的端到端动态作业车间调度模型

    公开(公告)号:CN115034653A

    公开(公告)日:2022-09-09

    申请号:CN202210738071.6

    申请日:2022-06-27

    Applicant: 暨南大学

    Abstract: 本发明涉及用于人工智能技术领域,具体涉及一种基于transformer的端到端动态作业车间调度模型,可以应用于不同尺寸的DJSSP(作业车间调度问题)。由特征提取模块、特征压缩模块、动作选择模块所构成。特征提取模块提取生产环境特征,并利用特征压缩模块将生产环境的特征进一步压缩成定长向量。然后,动作选择模块根据压缩后的能够反映生产环境状态的定长向量,实时选择简单优先级规则。本发明所建立的模型是Transformer在DJSSP中的第一个应用,不仅提高了工业调度的生产能力,而且为未来深度学习在DJSSP中的研究提供了范式。

    一种基于transformer的端到端动态作业车间调度系统

    公开(公告)号:CN115034653B

    公开(公告)日:2023-07-11

    申请号:CN202210738071.6

    申请日:2022-06-27

    Applicant: 暨南大学

    Abstract: 本发明涉及用于人工智能技术领域,具体涉及一种基于transformer的端到端动态作业车间调度系统,可以应用于不同尺寸的DJSSP。由特征提取模块、特征压缩模块、动作选择模块所构成。特征提取模块提取生产环境特征,并利用特征压缩模块将生产环境的特征进一步压缩成定长向量。然后,动作选择模块根据压缩后的能够反映生产环境状态的定长向量,实时选择简单优先级规则。本发明所建立的系统是Transformer在DJSSP中的第一个应用,不仅提高了工业调度的生产能力,而且为未来深度学习在DJSSP中的研究提供了范式。

    一种基于安全强化学习及视觉传感器的机器人避障系统

    公开(公告)号:CN113359744A

    公开(公告)日:2021-09-07

    申请号:CN202110684879.6

    申请日:2021-06-21

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于安全强化学习及视觉传感器的机器人避障系统,包括卷积神经模块,所述卷积神经网络模块包括长短期记忆单元;还包括加入LSTM单元、第一卷积层、第二卷积层、第一全连接层、第二全连接层、输出层。本发明采用强化学习算法的增强,使多维,连续,多约束问题能够较好的收敛于信任域内,解决了以往带约束的强化学习算法的诸多问题。可以大幅提高生产安全,普适地应用在不同场合的危险工作上,在解放劳动力的同时,提高了操作安全性、精准性。

    一种基于安全强化学习及视觉传感器的机器人避障系统

    公开(公告)号:CN113359744B

    公开(公告)日:2022-03-01

    申请号:CN202110684879.6

    申请日:2021-06-21

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于安全强化学习及视觉传感器的机器人避障系统,包括卷积神经模块,所述卷积神经网络模块包括长短期记忆单元;还包括加入LSTM单元、第一卷积层、第二卷积层、第一全连接层、第二全连接层、输出层。本发明采用强化学习算法的增强,使多维,连续,多约束问题能够较好的收敛于信任域内,解决了以往带约束的强化学习算法的诸多问题。可以大幅提高生产安全,普适地应用在不同场合的危险工作上,在解放劳动力的同时,提高了操作安全性、精准性。

Patent Agency Ranking