-
公开(公告)号:CN112671757B
公开(公告)日:2023-10-31
申请号:CN202011526966.0
申请日:2020-12-22
Applicant: 无锡江南计算技术研究所
IPC: H04L9/40 , H04L41/142 , H04L43/18 , G06F18/24 , G06N3/084 , G06N3/0985 , G06N3/0464 , G06N3/047 , G06N3/048
Abstract: 本发明公开一种基于自动机器学习的加密流量协议识别方法及装置,所述方法包括以下步骤:对加密流量进行会话切分、匿名化处理、统一数据包长度等数据预处理工作;提取流量样本的14个流特征;采用自动机器学习方法识别加密流量协议,并输出结果。本发明提供两种协议识别的方法,一种通过提取数据的统计特征自动生成最优的机器学习算法、模型并自动优化模型的超参数;另一种仅利用原始加密流量即可自动搜索出适合加密流量分类任务的最优神经网络结构,两种方法均可在无需借助人工智能专家智慧的情况下,自动生成优化的机器学习算法与神经网络模型,并自动优化超参数,实现对加密流量协议的自动分类,从而大大提升加密流量协议识别的准确率和效率。
-
公开(公告)号:CN112671757A
公开(公告)日:2021-04-16
申请号:CN202011526966.0
申请日:2020-12-22
Applicant: 无锡江南计算技术研究所
Abstract: 本发明公开一种基于自动机器学习的加密流量协议识别方法及装置,所述方法包括以下步骤:对加密流量进行会话切分、匿名化处理、统一数据包长度等数据预处理工作;提取流量样本的14个流特征;采用自动机器学习方法识别加密流量协议,并输出结果。本发明提供两种协议识别的方法,一种通过提取数据的统计特征自动生成最优的机器学习算法、模型并自动优化模型的超参数;另一种仅利用原始加密流量即可自动搜索出适合加密流量分类任务的最优神经网络结构,两种方法均可在无需借助人工智能专家智慧的情况下,自动生成优化的机器学习算法与神经网络模型,并自动优化超参数,实现对加密流量协议的自动分类,从而大大提升加密流量协议识别的准确率和效率。
-