-
公开(公告)号:CN118760174A
公开(公告)日:2024-10-11
申请号:CN202410908156.3
申请日:2024-07-08
Applicant: 无锡学院
Abstract: 本发明公开了一种DoS攻击下多智能体的预定时间滑模编队控制方法,包括建立非周期性DoS攻击模型,考虑智能体之间的动态相互作用、协调关系以及外部干扰,建立多智能体动态模型,描述智能体的位置变化;设计预定时间滑模面以及其控制器,以实现多智能体的非线性系统对外部环境以及DoS攻击的适应性;设置预定时间终端滑模控制的Lyapunov充分条件;通过无界Lyapunov函数V2(x)进行无DoS攻击时系统稳定性证明;设定DoS攻击下的预定时间稳定系统的稳定性证明控制器,通过调整误差系统的初始参数,使得非线性系统完成非周期DoS攻击下期望的时变编队控制。通过本发明方法提升了非周期性DoS攻击以及持续外部干扰对非线性多智能体系统稳定性。
-
公开(公告)号:CN119917958A
公开(公告)日:2025-05-02
申请号:CN202510412846.4
申请日:2025-04-03
Applicant: 无锡学院
IPC: G06F18/2431 , G06F18/25 , G01M99/00
Abstract: 本发明提供一种多传感器数据融合的设备故障诊断方法及系统,涉及设备故障诊断技术领域,本发明通过多传感器数据融合的方法,显著提高了设备故障诊断的准确性和可靠性。具体而言,本发明从图像、温度多个传感器数据中提取特征,并通过特征融合生成设备故障特征指数,从而实现对设备故障的预测诊断,通过采集关键部位的温度数据以及工作图像,对工作图像进行相关性分析,生成反映设备工作图像的图像纹理特征评估指数,对温度数据进行相关性处理,生成反映设备温度特征值的温度特征评估指数,并对温度特征评估指数和图像纹理特征评估指数进行相关性分析,生成设备故障特征指数,从而输出可能性最高的故障类型。
-
公开(公告)号:CN118760174B
公开(公告)日:2025-01-24
申请号:CN202410908156.3
申请日:2024-07-08
Applicant: 无锡学院
Abstract: 本发明公开了一种DoS攻击下多智能体的预定时间滑模编队控制方法,包括建立非周期性DoS攻击模型,考虑智能体之间的动态相互作用、协调关系以及外部干扰,建立多智能体动态模型,描述智能体的位置变化;设计预定时间滑模面以及其控制器,以实现多智能体的非线性系统对外部环境以及DoS攻击的适应性;设置预定时间终端滑模控制的Lyapunov充分条件;通过无界Lyapunov函数V2(x)进行无DoS攻击时系统稳定性证明;设定DoS攻击下的预定时间稳定系统的稳定性证明控制器,通过调整误差系统的初始参数,使得非线性系统完成非周期DoS攻击下期望的时变编队控制。通过本发明方法提升了非周期性DoS攻击以及持续外部干扰对非线性多智能体系统稳定性。
-
公开(公告)号:CN119151242A
公开(公告)日:2024-12-17
申请号:CN202411605411.3
申请日:2024-11-12
Applicant: 无锡学院
IPC: G06Q10/0631 , G06N20/00 , G06Q10/083
Abstract: 本发明公开了一种基于强化学习的多智能体系统高效任务分配方法及系统,本发明涉及配送物流多智能体系统任务分配领域,包括:该系统通过将总区域划分为多个面积相同的子区域,系统获取待分配配送任务的总数及其对应的需求数据和环境数据,依据需求数据为每个配送任务确定优先级,并基于目标配送位置信息统计每个子区域内的配送任务数量。系统获取可执行配送任务的运输智能体总数量,以及每个子区域中心点到总区域配送点的距离信息。结合环境数据和子区域内的配送任务数量,生成每个子区域的最大配送量。根据每个子区域的任务优先级和最大配送量,合理安排运输智能体执行任务配送,增强了在复杂环境下的适应性与稳定性。
-
公开(公告)号:CN118170013B
公开(公告)日:2024-11-26
申请号:CN202410207143.3
申请日:2024-02-26
Applicant: 无锡学院
IPC: G05B13/04
Abstract: 本发明公开了一种基于强化学习的无人机辅助配送方法,包括如下步骤:步骤一、构建用于无人机辅助配送的数学模型,即无人机配送调度问题模型,包括无人机任务分配模型和无人机路径规划模型;步骤二、基于PPO‑PSO算法,采用LSTM–CNN神经网络架构,分别设计用于无人机任务分配模型的任务分配算法和用于无人机路径规划模型的航线规划算法;步骤三、构建自主制导与跟踪避障模型,使无人机能够适应对象和环境的不确定性,具有变参数、变结构的能力,实现地面随机运动目标的连续跟踪和合理避障;步骤四、将自主制导与跟踪避障模型在pybullet平台上进行训练,将训练好的神经网络架构部署到设计好的实验环境上,采用ros系统进行仿真验证。
-
公开(公告)号:CN118170013A
公开(公告)日:2024-06-11
申请号:CN202410207143.3
申请日:2024-02-26
Applicant: 无锡学院
IPC: G05B13/04
Abstract: 本发明公开了一种基于强化学习的无人机辅助配送方法,包括如下步骤:步骤一、构建用于无人机辅助配送的数学模型,即无人机配送调度问题模型,包括无人机任务分配模型和无人机路径规划模型;步骤二、基于PPO‑PSO算法,采用LSTM–CNN神经网络架构,分别设计用于无人机任务分配模型的任务分配算法和用于无人机路径规划模型的航线规划算法;步骤三、构建自主制导与跟踪避障模型,使无人机能够适应对象和环境的不确定性,具有变参数、变结构的能力,实现地面随机运动目标的连续跟踪和合理避障;步骤四、将自主制导与跟踪避障模型在pybullet平台上进行训练,将训练好的神经网络架构部署到设计好的实验环境上,采用ros系统进行仿真验证。
-
-
-
-
-