-
公开(公告)号:CN119515698A
公开(公告)日:2025-02-25
申请号:CN202411626113.2
申请日:2024-11-14
Applicant: 无锡学院
IPC: G06T5/50 , H04N23/11 , G06V10/54 , G06T3/4038 , G06N3/0455 , G06N3/0464 , G06N3/048 , G06N3/09
Abstract: 本发明公开了一种红外与可见光图像融合方法、电子设备和存储介质,属于图像处理的技术领域;该方法包括:获取弱可见光图像以及与所述弱可见光图像对应的红外图像;构建图像融合网络,所述图像融合网络使用预训练的亮度调节网络生成的有监督标签进行监督,同时采用预训练的提示词生成网络对融合图像质量进行约束;将所述弱可见光图像以及与所述弱可见光图像对应的所述红外图像输入所述图像融合网络中进行融合,得到融合图像。本发明的技术方案不仅有效抑制了传统夜间图像融合算法存在的白天过曝问题,同时还有效抑制了夜间点光源过曝问题。
-
公开(公告)号:CN119445070A
公开(公告)日:2025-02-14
申请号:CN202411435307.4
申请日:2024-10-15
Applicant: 无锡学院
IPC: G06V10/25 , G06V10/82 , G06V10/764 , G06V10/766 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/143 , G06V20/58 , G06V20/70 , G06N3/0464 , G06N3/045 , G06N3/0985 , G06N3/048
Abstract: 本发明提出一种基于改进轻量化YOLOv8模型的夜间红外检测方法及系统,涉及深度学习、目标检测的技术领域。首先,获取红外图像数据集,对红外图像数据集进行预处理,并将预处理后的红外图像数据集划分为训练集、验证集和测试集;构建改进轻量化YOLOv8模型;所述改进轻量化YOLOv8模型在YOLOv8模型的基础上加入用于提高红外图像多尺度及特征提取能力的DWR模块、用于提高图像特征融合能力的CGAFusion模块和LSDECD_Detect模块;利用训练集对改进轻量化YOLOv8模型进行训练,并在训练过程中,利用验证集验证改进轻量化YOLOv8模型的有效性,得到训练好的改进轻量化YOLOv8模型;将测试集输入至训练好的改进轻量化YOLOv8模型,得到红外检测结果,实现在夜间能见度较差的情况下,提高车辆检测准确率。
-