-
公开(公告)号:CN109916849A
公开(公告)日:2019-06-21
申请号:CN201910269156.2
申请日:2019-04-04
Applicant: 新疆大学
IPC: G01N21/359 , G06K9/62
Abstract: 本发明实施例提供一种基于近红外光谱相关性分析检测样品理化性质的方法,所述方法包括:获得待测样品的原始近红外光谱数据集;对所述原始近红外光谱数据集中的波长数据进行重要多元相关性分析,去除所述原始近红外光谱数据集中的与所述待测样品不相关的波长数据,得到新近红外光谱数据集;将所述新近红外光谱数据集输入预先生成的检测模型进行理化性质检测,得到所述待测样品的理化性质。可见,根据原始近红外光谱数据集中的波长数据之间的重要多元相关性,将与待测样品不相关的波长数据去除,使新近红外光谱数据集能够更加真实的表征待测样品,进而能够使检测出的理化性质更加符合待测样品的实际情况,能够提高检测结果的准确性。
-
公开(公告)号:CN109916850A
公开(公告)日:2019-06-21
申请号:CN201910269315.9
申请日:2019-04-04
Applicant: 新疆大学
IPC: G01N21/359 , G06K9/62
Abstract: 本发明实施例提供一种基于近红外光谱显著性分析检测样品理化性质的方法,所述方法包括:获得待测样品的原始近红外光谱数据集;对所述原始近红外光谱数据集中的波长数据进行显著性分析,去除所述原始近红外光谱数据集中的与所述待测样品不相关的波长数据,得到新近红外光谱数据集;将所述新近红外光谱数据集输入预先生成的检测模型进行理化性质检测,得到所述待测样品的理化性质。可见,根据原始近红外光谱数据集中的波长数据之间的显著性,将与待测样品不相关的波长数据去除,使新近红外光谱数据集能够更加真实的表征待测样品,进而能够使检测出的理化性质更加符合待测样品的实际情况,能够提高检测结果的准确性。
-