-
公开(公告)号:CN110782467A
公开(公告)日:2020-02-11
申请号:CN201911016728.2
申请日:2019-10-24
Applicant: 新疆农业大学
Abstract: 本发明涉及图像处理技术领域,具体为基于深度学习和图像处理的马体尺测量方法,该方法包括以下步骤:YOLACT的分割、马体分割图像的预处理、马体尺测量点的标定和马体尺的测量。基于YOLACT实例分割技术,完成马体与背景的快速、高性能分割;提出动态网格的测点标定方法,完成马体尺特征点的数据标定;采用Regress的多元线性回归方式,完成马体尺数据中胸围、管围的数据拟合及三维预测,并以像素为640*480两匹伊犁马体图像为例,定量获得了体尺测量结果;结果表明,基于深度学习和图像测量技术,可有效进行伊犁马体尺的自动测量并将其误差控制在较小范围之间,就大体型动物的体尺测量技术而言,该研究具备范例参考意义。
-