-
公开(公告)号:CN118887585A
公开(公告)日:2024-11-01
申请号:CN202411018735.7
申请日:2024-07-29
Applicant: 新型显示与视觉感知石城实验室
IPC: G06V20/40 , G06V10/764 , G06N20/10 , G06T7/246 , G06T7/269
Abstract: 本发明公开了一种基于SVM及运动特征提取的视频帧分类方法和系统,旨在高效且准确地对视频内容进行自动分析与归类。该方法将视频帧划分为四大类别:镜头固定、镜头切换、镜头跟随和大幅运动,通过运动特征矢量构建与SVM模型的集成应用,实现了对视频帧的分类。首先提取当前帧及上一帧图像并进行预处理,随后利用运动分析技术,如帧间差异检测、光流法等,提取出帧间运动特征,如运动强度、方向变化及连续性等。将这些特征组织成特征向量,作为支持向量机分类的输入。通过SVM模型训练过程,能够迅速而准确地判断其所属类别。本发明提高了视频处理的自动化水平和分类精度,为视频内容分析、监控系统、智能编辑等领域提供了强大的技术支持。