-
公开(公告)号:CN113992525B
公开(公告)日:2024-06-21
申请号:CN202111187472.9
申请日:2021-10-12
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书公开了一种应用的容器数量调节方法及装置,基于应用的历史数据,通过预训练的流量预测模型,对应用的未来预设时长内的流量分布进行预测,并基于预测得到的流量分布,通过预训练的数量预测模型,预测在该预设时长内该应用的容器数量分布,并根据得到的容器数量分布,调节该应用在该预设时长内各时刻的容器数量。能够预先对未来预设时长内应用的流量进行预测,以得到相应的各时刻应部署的容器数量,及时对应用各时刻的容器数量进行调节。
-
公开(公告)号:CN114970359B
公开(公告)日:2024-05-31
申请号:CN202210629028.6
申请日:2022-06-06
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F30/27 , G06F119/02
Abstract: 本说明书实施例提供了一种建立时间序列预测模型的方法、时间序列预测方法和装置。根据该实施例的方法,首先将第i个时间序列输入时间序列预测模型,所述时间序列包括连续n个时间点的指标值,所述时间序列中包含指标极值信息,所述n为大于1的正整数;然后获取所述时间序列预测模型依据所述第i个时间序列及其之前的历史时间序列预测得到的所述第i个时间序列之后τ个时间点的指标值,所述τ为预设的正整数;其中,所述时间序列预测模型基于记忆网络预先训练得到。
-
公开(公告)号:CN114970359A
公开(公告)日:2022-08-30
申请号:CN202210629028.6
申请日:2022-06-06
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F30/27 , G06F119/02
Abstract: 本说明书实施例提供了一种建立时间序列预测模型的方法、时间序列预测方法和装置。根据该实施例的方法,首先将第i个时间序列输入时间序列预测模型,所述时间序列包括连续n个时间点的指标值,所述时间序列中包含指标极值信息,所述n为大于1的正整数;然后获取所述时间序列预测模型依据所述第i个时间序列及其之前的历史时间序列预测得到的所述第i个时间序列之后τ个时间点的指标值,所述τ为预设的正整数;其中,所述时间序列预测模型基于记忆网络预先训练得到。
-
公开(公告)号:CN114881354B
公开(公告)日:2025-01-24
申请号:CN202210605502.1
申请日:2022-05-31
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F18/20 , G06F18/25 , G06N3/0464 , G06N3/0455 , G06N3/044 , G06N3/084 , G06Q10/04 , G06Q40/06 , G06F16/2458 , G06F123/02
Abstract: 本说明书实施例提供一种预测多元时间序列的方法及装置,针对各个业务主体的历史时间序列,一方面进行时序编码,另一方面进行周期编码,从而从时序和周期两方面挖掘数据之间的关联性。在时序预测过程中,将时序编码、周期编码两方面的数据融合解码,得到相应的解码张量,并将解码张量与时序特征张量一起用于预测多元时间序列。该方式能够自适应地挖掘时序、周期之间的关联关系,更灵活地提供更准确的时序预测结果。
-
公开(公告)号:CN115357339A
公开(公告)日:2022-11-18
申请号:CN202210974427.6
申请日:2022-08-15
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种计算资源的配置方法及装置,基于流量预测和强化学习的决策评估相结合的构思,在流量时序预测基础上,进行各种应用的计算资源配置。其中,在配置过程中,一方面,基于表征向量对各个应用进行表征,使得计算资源配置方案具有迁移能力,即使面对新应用,也可以基于表征向量适用相应的流量与CPU利用率的关系,另一方面,基于强化学习的策略评估机制,以目标CPU利用率为目标确定长期回报,从而在最大化长期回报基础上对计算资源配置的决策结果进行调整,使得计算资源配置方案尽可能以较小的成本接近目标CPU利用率。该计算资源配置的技术方案,可以为云计算提供更有效的扩缩容机制。
-
公开(公告)号:CN115048992A
公开(公告)日:2022-09-13
申请号:CN202210630555.9
申请日:2022-06-06
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06K9/62
Abstract: 本说明书实施例提供了一种建立时间序列预测模型的方法、时间序列预测方法和装置。根据该实施例的方法,首先从历史时间序列获取训练数据,所述训练数据包括连续n个时间点的指标值,所述n为大于1的正整数;然后利用所述训练数据训练状态空间模型,得到时间序列预测模型;其中,依时间顺序将各时间点分别作为第ts个时间点执行:将第ts个时间点的指标值输入所述状态空间模型,由所述状态空间模型依据所述第ts个时间点及其之前各时间点的指标值预测所述第ts个时间点之后τ个时间点的指标值,所述τ为预设的正整数;训练目标包括最小化预测的指标值与训练数据中对应指标值的差异;其中,在所述预测中将待预测时间点之前各时间点的隐状态表示进行注意力机制的处理来得到所述待预测时间点的隐状态表示。
-
公开(公告)号:CN113992525A
公开(公告)日:2022-01-28
申请号:CN202111187472.9
申请日:2021-10-12
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书公开了一种应用的容器数量调节方法及装置,基于应用的历史数据,通过预训练的流量预测模型,对应用的未来预设时长内的流量分布进行预测,并基于预测得到的流量分布,通过预训练的数量预测模型,预测在该预设时长内该应用的容器数量分布,并根据得到的容器数量分布,调节该应用在该预设时长内各时刻的容器数量。能够预先对未来预设时长内应用的流量进行预测,以得到相应的各时刻应部署的容器数量,及时对应用各时刻的容器数量进行调节。
-
公开(公告)号:CN115034462B
公开(公告)日:2025-02-18
申请号:CN202210623040.6
申请日:2022-06-02
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种针对分层业务的时间序列预测方法及装置,用于预测单个业务在多阶层次上的业务主体的业务量构成的时间序列,其中,单个层次对应至少一个业务主体。根据一个实施方式,在获取多个层次中各个业务主体一一对应的各个历史时间序列后,可以对各个历史时间序列进行编码,得到相应的各个编码向量,然后构建各个编码向量满足的多元高斯分布,并将多元高斯分布转换为非参数化复杂分布,进一步按照分参数化复杂分布进行采样得到的采样序列,确定分别针对各个业务主体的各个预测序列。该方式可以提高预测结果的准确性。
-
公开(公告)号:CN115222093A
公开(公告)日:2022-10-21
申请号:CN202210651221.X
申请日:2022-06-10
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供了一种建立时间序列预测模型的方法、时间序列预测方法和装置。根据该实施例的方法,首先从m个被测对象的历史时间序列获取训练数据,训练数据包括m个被测对象在连续n个时间点的指标值;然后利用训练数据训练得到m元时间序列预测模型;其中,依时间顺序将各时间点分别作为第ts个时间点执行:将m个被测对象在第ts个时间点的指标值输入m元时间序列预测模型,由m元时间序列预测模型依据m个被测对象在第ts个时间点及其之前各时间点的指标值预测m个被测对象在第ts个时间点之后τ个时间点的指标值;训练目标包括最小化预测的指标值与训练数据中对应指标值的差异。本说明书实施例能够实现更为准确的时间序列预测。
-
公开(公告)号:CN115221427A
公开(公告)日:2022-10-21
申请号:CN202210662411.1
申请日:2022-06-13
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/9537 , G06Q10/04 , G06Q10/06 , G06Q10/10
Abstract: 本说明书实施例公开了一种时间序列预测方法、装置、设备、介质及程序产品。其中,该方法包括:首先获取1至t时刻的N元时间序列;上述N元时间序列由时间长度一致,且统计指标相同的N个统计目标各自对应的时间序列组成;然后获取1至t+m时刻的N元时间序列对应的目标协变量;最后将1至t时刻的N元时间序列以及目标协变量输入时间序列预测模型中,可以根据基于标准化流技术得到的观测方程输出t+1至t+m时刻的N元预测时间序列;预测时间序列为m个时刻的统计指标各自对应的预测数值按其未来发生时间的先后顺序排列而成的数列,通过标准化流技术生成观测方程,可以更为精确地刻画现实世界中复杂的数据分布,提升时间序列预测的准确性。
-
-
-
-
-
-
-
-
-