机器阅读理解中的数值推理方法和装置

    公开(公告)号:CN111737419B

    公开(公告)日:2020-12-04

    申请号:CN202010759810.0

    申请日:2020-07-31

    Abstract: 本说明书实施例提供一种机器阅读理解中的数值推理方法和装置。方法包括:获取当前问题和当前文本;确定当前问题和当前文本中包括的各实体和各数字,以及各数字分别对应的类型;构建关系网络图,包括对应于各实体的实体节点,和对应于各数字的数字节点,在相同类型的数字节点之间,以及具有预设关系的实体节点和数字节点之间,通过连接边形成邻居;确定当前问题对应的第一问题表征向量,以及关系网络图中各节点的初始表征向量;基于各节点的初始表征向量,对所述关系网络图中的各节点进行预定次数的迭代,以得到各节点的更新表征向量。能够提高机器阅读理解中的数值推理处理复杂问题的能力。

    一种文本内容修正的方法和系统

    公开(公告)号:CN111291552A

    公开(公告)日:2020-06-16

    申请号:CN202010384219.1

    申请日:2020-05-09

    Abstract: 本说明书实施例公开了一种文本内容修正的方法及系统。所述方法包括:获取待检测文本;生成所述待检测文本中各个字符对应的语义向量;对于每个所述语义向量,确定该语义向量在修正矩阵中对应的修正向量,进而将所述修正向量对应的字符作为修正后的字符;所述修正矩阵包括所述字符集中各字符的修正向量,其基于词嵌入矩阵和混淆特征矩阵生成;所述混淆特征矩阵基于所述词嵌入矩阵和混淆关系图,通过混淆模型获得;所述混淆关系图表示字符之间的符号近似关系;所述词嵌入矩阵包括字符集中各字符的词嵌入向量。

    机器阅读理解中的数值推理方法和装置

    公开(公告)号:CN112507074A

    公开(公告)日:2021-03-16

    申请号:CN202011436272.8

    申请日:2020-07-31

    Abstract: 本说明书实施例提供一种机器阅读理解中的数值推理方法和装置。方法包括:获取当前问题和当前文本;确定当前问题和当前文本中包括的各实体和各数字,以及各数字分别对应的类型;构建关系网络图,包括对应于各实体的实体节点,和对应于各数字的数字节点,在相同类型的数字节点之间,以及具有预设关系的实体节点和数字节点之间,通过连接边形成邻居;确定当前问题对应的第一问题表征向量,以及关系网络图中各节点的初始表征向量;基于各节点的初始表征向量,对所述关系网络图中的各节点进行预定次数的迭代,以得到各节点的更新表征向量。能够提高机器阅读理解中的数值推理处理复杂问题的能力。

    机器阅读理解中的数值推理方法和装置

    公开(公告)号:CN111737419A

    公开(公告)日:2020-10-02

    申请号:CN202010759810.0

    申请日:2020-07-31

    Abstract: 本说明书实施例提供一种机器阅读理解中的数值推理方法和装置。方法包括:获取当前问题和当前文本;确定当前问题和当前文本中包括的各实体和各数字,以及各数字分别对应的类型;构建关系网络图,包括对应于各实体的实体节点,和对应于各数字的数字节点,在相同类型的数字节点之间,以及具有预设关系的实体节点和数字节点之间,通过连接边形成邻居;确定当前问题对应的第一问题表征向量,以及关系网络图中各节点的初始表征向量;基于各节点的初始表征向量,对所述关系网络图中的各节点进行预定次数的迭代,以得到各节点的更新表征向量。能够提高机器阅读理解中的数值推理处理复杂问题的能力。

    一种文本内容修正的方法和系统

    公开(公告)号:CN111291552B

    公开(公告)日:2020-08-14

    申请号:CN202010384219.1

    申请日:2020-05-09

    Abstract: 本说明书实施例公开了一种文本内容修正的方法及系统。所述方法包括:获取待检测文本;生成所述待检测文本中各个字符对应的语义向量;对于每个所述语义向量,确定该语义向量在修正矩阵中对应的修正向量,进而将所述修正向量对应的字符作为修正后的字符;所述修正矩阵包括所述字符集中各字符的修正向量,其基于词嵌入矩阵和混淆特征矩阵生成;所述混淆特征矩阵基于所述词嵌入矩阵和混淆关系图,通过混淆模型获得;所述混淆关系图表示字符之间的符号近似关系;所述词嵌入矩阵包括字符集中各字符的词嵌入向量。

    语义相似度确定方法、装置及处理设备

    公开(公告)号:CN111241851A

    公开(公告)日:2020-06-05

    申请号:CN202010329730.1

    申请日:2020-04-24

    Abstract: 本说明书提供一种语义相似度确定方法、装置及处理设备,预先建立的语义相似度模型从两个不同的角度处理句子对,既考虑了文本句子的维度,又结合了文本单词级交叉矩阵的角度。在需要对待处理文本进行语义相似度的计算时,可以直接利用建立好的语义相似度模型中的语句语义确定子模型对待处理文本分别进行语义编码,将待处理文本分别转换为向量表示,基于转换后的向量对待处理文本进行相似度计算。在确保语义相似度计算效率的基础上,提高了语义相似度计算的准确性。

    一种分词方法、多模式分词模型和系统

    公开(公告)号:CN112199952B

    公开(公告)日:2021-03-23

    申请号:CN202011397544.8

    申请日:2020-12-04

    Abstract: 本说明书实施例公开了一种分词方法、多模式分词模型和系统。该方法包括:获取待处理文本;利用多模式分词模型对所述待处理文本进行以下处理,以确定对所述待处理文本的分词结果:通过特征提取层处理所述待处理文本,获得对应于所述待处理文本的特征序列;基于所述待处理文本所属的领域类型,通过对应所述领域类型的至少一个映射层处理所述特征序列,获得至少一个映射特征;通过预测层基于所述至少一个映射特征确定对所述待处理文本的所述分词结果。

    一种分词方法、多模式分词模型和系统

    公开(公告)号:CN112199952A

    公开(公告)日:2021-01-08

    申请号:CN202011397544.8

    申请日:2020-12-04

    Abstract: 本说明书实施例公开了一种分词方法、多模式分词模型和系统。该方法包括:获取待处理文本;利用多模式分词模型对所述待处理文本进行以下处理,以确定对所述待处理文本的分词结果:通过特征提取层处理所述待处理文本,获得对应于所述待处理文本的特征序列;基于所述待处理文本所属的领域类型,通过对应所述领域类型的至少一个映射层处理所述特征序列,获得至少一个映射特征;通过预测层基于所述至少一个映射特征确定对所述待处理文本的所述分词结果。

Patent Agency Ranking