基于元学习和强化学习结合的异构GPU资源调度方法和系统

    公开(公告)号:CN119599857A

    公开(公告)日:2025-03-11

    申请号:CN202411641402.X

    申请日:2024-11-18

    Abstract: 本发明涉及一种基于元学习和强化学习结合的异构GPU资源调度方法与系统,旨在提高大模型训练与推理中的计算资源利用效率,提升任务的适应能力和系统的响应速度。本发明通过任务特征提取、元学习策略初始化、强化学习调度优化、任务调度执行、动态策略调整五个步骤来实现GPU资源的高效调度。其中,元学习模块利用历史任务积累的知识,生成初始调度策略,减少了探索时间;强化学习模块通过环境反馈不断优化调度策略,实现任务的高效分配。系统能够根据不同任务需求和GPU硬件资源的动态变化自适应调整策略,从而实现更高的资源利用率和整体性能优化。

Patent Agency Ranking