-
公开(公告)号:CN114448599A
公开(公告)日:2022-05-06
申请号:CN202210151457.7
申请日:2022-02-18
Applicant: 广州杰赛科技股份有限公司 , 广州杰赛通信规划设计院有限公司 , 暨南大学
IPC: H04L9/00
Abstract: 本发明公开一种入侵检测方法及系统,其由边缘节点对边缘侧自身的设备特征数据进行边缘入侵检测模型的构造,由云节点基于所有边缘节点的边缘入侵检测模型的模型输入和模型输出训练云节点的全局模型参数,其中,所述全局模型为基于贝叶斯深度学习的模型;同时云节点基于全局模型预测的误差精度自适应调整全局模型输入的采样数据量,本发明不仅能减少云节点通信传输的压力,还提升了云节点响应服务的能力。同时,本发明每隔一检测周期进行入侵检测模型的更新,全局模型的参数更新会随着边缘节点的数据分布的变动而变动,从而能提高入侵检测的准确率。
-
公开(公告)号:CN114448599B
公开(公告)日:2024-11-29
申请号:CN202210151457.7
申请日:2022-02-18
Applicant: 广州杰赛科技股份有限公司 , 广州杰赛通信规划设计院有限公司 , 暨南大学
IPC: H04L9/00
Abstract: 本发明公开一种入侵检测方法及系统,其由边缘节点对边缘侧自身的设备特征数据进行边缘入侵检测模型的构造,由云节点基于所有边缘节点的边缘入侵检测模型的模型输入和模型输出训练云节点的全局模型参数,其中,所述全局模型为基于贝叶斯深度学习的模型;同时云节点基于全局模型预测的误差精度自适应调整全局模型输入的采样数据量,本发明不仅能减少云节点通信传输的压力,还提升了云节点响应服务的能力。同时,本发明每隔一检测周期进行入侵检测模型的更新,全局模型的参数更新会随着边缘节点的数据分布的变动而变动,从而能提高入侵检测的准确率。
-
公开(公告)号:CN119696827A
公开(公告)日:2025-03-25
申请号:CN202411677995.5
申请日:2024-11-22
Applicant: 中电科普天科技股份有限公司 , 暨南大学 , 广州杰赛通信规划设计院有限公司
IPC: H04L9/40 , G06F18/2415 , G06F18/25 , G06F18/22 , G06F18/213 , G06N3/045 , H04L41/0631 , H04L41/16
Abstract: 本发明涉及互联网技术领域,公开了一种基于多模态融合的网络异常检测方法和系统;方法包括:利用多头注意力提取多模态信息的数据特征;引入标签形成表达对网络入侵检测的影响程度的权重并根据权重对数据特征进行特征融合;将融合后的特征输入分类器实现网络异常检测。通过多模态数据的融合,实现了信息互补和信息相互验证的优势;采用多注意力机制实现网络流级别、进程级别和告警事件级别等多模态特征的融合,挖掘不同数据源之间存在的关联规则,实现多源异构信息共享,减少网络流量突发性、随机性等噪声对网络异常产生的影响。
-
公开(公告)号:CN118138339A
公开(公告)日:2024-06-04
申请号:CN202410357625.7
申请日:2024-03-27
Applicant: 中电科普天科技股份有限公司 , 广州杰赛通信规划设计院有限公司 , 暨南大学
Abstract: 本发明公开了一种基于物联网设备的安全保护方法、系统、设备和介质,涉及物联网技术领域,方法包括:通过卷积神经网络锁定异常滑动窗口,之后采用偏移距离分析法,锁定异常的物联网设备;根据交互行为信任度和数据一致性水平,得到综合信任度,实现物联网设备的信任度评估;引入综合信任度阈值调整访问权限,实现物联网设备安全保护。采用告警事件和物联网设备构建物联网设备的入侵机制;引入零信任的持续评估机制,结合交互行为信任度和数据一致性水平实现物联网设备的信任度评估;引入综合信任度阈值调整访问权限,实现物联网设备安全保护,对物联网设备的身份进行统一管理,实时评估物联网设备的安全性问题。
-
公开(公告)号:CN118036768A
公开(公告)日:2024-05-14
申请号:CN202410148779.5
申请日:2024-02-01
Applicant: 中电科普天科技股份有限公司 , 广州杰赛通信规划设计院有限公司 , 暨南大学
IPC: G06N20/00
Abstract: 本发明公开了一种联邦学习模型优化方法、设备、介质及程序产品,所述方法包括:获取边缘端采集的多属性数据,并计算边缘端的数据量因子、数据质量因子以及数据分布特征因子,从而得到边缘端的可信度;选取可信边缘端进行全局模型的参数更新;向可信边缘端发送第一全局参数,以使可信边缘端进行本地模型的训练,并得到本地模型参数;根据本地模型的平均误差以及预设的全局模型学习率,计算得到动态学习率;根据第一全局参数、动态学习率、可信边缘端的可信度以及本地模型参数,计算得到第二全局参数,实现全局模型的参数更新。本发明实施例解决了数据异构所导致的全局模型性能低下的问题,实现了全局参数更新速度和算法稳定度的平衡。
-
公开(公告)号:CN117728879A
公开(公告)日:2024-03-19
申请号:CN202410091420.9
申请日:2024-01-22
Applicant: 中电科普天科技股份有限公司 , 广州杰赛通信规划设计院有限公司 , 暨南大学 , 华南理工大学
Abstract: 本发明公开了一种卫星节点部署方法。该方法包括:计算卫星链路的数据传输速率、卫星网络的可靠性、业务总时延和负载均衡系数;基于数据传输速率、业务总时延、卫星网络的可靠性和负载均衡系数,构建以部署成本最小化为目标的目标函数;采用强化学习算法求解目标函数,得到卫星节点的最佳部署位置;根据最佳部署位置部署卫星节点。本发明通过采用主从协同的方式构建星地组网架构,基于数据传输速率、业务总时延、卫星网络的可靠性和负载均衡系数,构建目标函数,保证了部署成本的最小化,采用强化学习算法能够快速求解卫星节点的最佳部署位置。
-
公开(公告)号:CN114866278B
公开(公告)日:2023-07-14
申请号:CN202210298928.7
申请日:2022-03-25
Applicant: 广州杰赛科技股份有限公司 , 暨南大学
IPC: H04L9/40 , H04L45/028
Abstract: 本发明提供了一种网络安全动态防御方法、装置、设备及介质,能够根据网络安全可靠性的大小动态调整网路的可行路径集合,并结合网络安全可靠性的变动方向动态调整网络通信的存活时隙,以此构建边缘计算网络下的网络可行路径集合,并采用随机选取通信路径的方式,在一定程度上降低了攻击者通过监听掌握通信路径后发起跟随攻击的可能性。
-
公开(公告)号:CN114866278A
公开(公告)日:2022-08-05
申请号:CN202210298928.7
申请日:2022-03-25
Applicant: 广州杰赛科技股份有限公司 , 暨南大学
IPC: H04L9/40 , H04L45/028
Abstract: 本发明提供了一种网络安全动态防御方法、装置、设备及介质,能够根据网络安全可靠性的大小动态调整网路的可行路径集合,并结合网络安全可靠性的变动方向动态调整网络通信的存活时隙,以此构建边缘计算网络下的网络可行路径集合,并采用随机选取通信路径的方式,在一定程度上降低了攻击者通过监听掌握通信路径后发起跟随攻击的可能性。
-
公开(公告)号:CN118870395A
公开(公告)日:2024-10-29
申请号:CN202411288630.3
申请日:2024-09-14
Applicant: 暨南大学
IPC: H04W24/02 , H04W24/06 , H04W28/08 , H04W28/16 , H04W4/44 , H04W4/46 , G06F8/61 , G06F9/50 , G06N3/006 , G06N3/0464
Abstract: 本发明提供一种基于自注意力机制的车联网任务卸载和资源分配方法及系统,方法包括以下步骤:基于车联网高速道路环境VEC架构,构建车联网任务卸载模型;基于车联网任务卸载模型,获得任务卸载和资源分配的联合优化问题;将联合优化问题转化为马尔科夫决策过程;采用基于自注意力机制的A‑MADDPG算法求解马尔科夫决策过程,获得联合优化方案;基于联合优化方案,完成车联网任务卸载和资源分配。本发明所设计的任务卸载联合优化方案,通过智能协作,车辆不仅选取合适的卸载对象还选取合适的通信信道进行卸载传输,而且各个边缘服务器闲置资源按照任务需求进行动态分配,从而确保整个环境中的所有车辆都能处于高效的运行水平。
-
公开(公告)号:CN118194357B
公开(公告)日:2024-08-09
申请号:CN202410605553.3
申请日:2024-05-16
Applicant: 暨南大学 , 深圳市方直科技股份有限公司 , 深圳市木愚科技有限公司
Abstract: 本发明提出了一种基于扩散去噪模型的隐私数据发布方法,包括:构建教育数据集,其中,所述教育数据集包括:隐私属性集和非隐私属性集;基于隐私预算,对所述隐私属性集进行PRAM预扰动;基于PRAM预扰动后的数据对预设的数据生成模型进行训练;基于训练后的数据生成模型进行采样,生成包含特定数量的数据记录作为合成数据集。本发明在可以在满足本地差分隐私定义的情况下,生成数据效用良好的教育类数据集,适用于各类教育数据应用场景。与一般的基于深度生成式模型的隐私数据发布方法相比,该方案可以实现更好的隐私‑效用权衡。
-
-
-
-
-
-
-
-
-