-
公开(公告)号:CN110858215B
公开(公告)日:2023-04-07
申请号:CN201810967833.3
申请日:2018-08-23
Applicant: 广东工业大学
IPC: G06F16/332 , G06F16/35
Abstract: 本发明涉及自然语言处理技术领域,具体涉及一种基于深度学习的端到端目标引导型对话方法,包括如下步骤:S1:获取上一轮用户对话和当前对话历史,根据上一轮用户对话和当前对话历史初始化序列到序列模型;S2:确定当前知识库实体的行号;S3:确定当前知识库实体的列号;S4:通过注意力机制的得到最佳匹配实体;S5:迭代执行步骤S2‑S4直至最终输出下一轮对话。本发明克服了现有的端到端的对话对话效率低下,影响用户的个性化体验的技术缺陷,通过自然语言对话的精准度,提供良好的用户服务。
-
公开(公告)号:CN110858215A
公开(公告)日:2020-03-03
申请号:CN201810967833.3
申请日:2018-08-23
Applicant: 广东工业大学
IPC: G06F16/332 , G06F16/35
Abstract: 本发明涉及自然语言处理技术领域,具体涉及一种基于深度学习的端到端目标引导型对话方法,包括如下步骤:S1:获取上一轮用户对话和当前对话历史,根据上一轮用户对话和当前对话历史初始化序列到序列模型;S2:确定当前知识库实体的行号;S3:确定当前知识库实体的列号;S4:通过注意力机制的得到最佳匹配实体;S5:迭代执行步骤S2-S4直至最终输出下一轮对话。本发明克服了现有的端到端的对话对话效率低下,影响用户的个性化体验的技术缺陷,通过自然语言对话的精准度,提供良好的用户服务。
-