-
公开(公告)号:CN111445406B
公开(公告)日:2023-05-05
申请号:CN202010212722.9
申请日:2020-03-24
Applicant: 广东工业大学
IPC: G06T5/00 , G06T5/20 , G06T7/40 , G06N3/08 , G06N3/0464
Abstract: 本发明公开了一种低剂量CT图片质量改善方法、系统及设备,包括:选择包含有低剂量图片和高剂量图片的CT文件并转化为H5PY矩阵数据;使用多方向的梯度算子对H5PY矩阵进行卷积运算,将多方向卷积计算结果与H5PY矩阵进行合并,将合并数据输入到VGG‑16神经网络模型中进行训练,对训练好的VGG‑16神经网络模型进行评价,选择出CT图片改善模型;将低剂量CT图片输入到CT图片改善模型中,得到图片质量改善后的低剂量CT图片。本发明多方向梯度算子应用于低剂量CT图片质量的改善之中,多方向梯度算子抗干扰能力强,能够去除图片中的噪音,同时注重细节恢复,有效获取图片的细节纹理,大大提高网络的人眼感受效果。
-
公开(公告)号:CN111445406A
公开(公告)日:2020-07-24
申请号:CN202010212722.9
申请日:2020-03-24
Applicant: 广东工业大学
Abstract: 本发明公开了一种低剂量CT图片质量改善方法、系统及设备,包括:选择包含有低剂量图片和高剂量图片的CT文件并转化为H5PY矩阵数据;使用多方向的梯度算子对H5PY矩阵进行卷积运算,将多方向卷积计算结果与H5PY矩阵进行合并,将合并数据输入到VGG-16神经网络模型中进行训练,对训练好的VGG-16神经网络模型进行评价,选择出CT图片改善模型;将低剂量CT图片输入到CT图片改善模型中,得到图片质量改善后的低剂量CT图片。本发明多方向梯度算子应用于低剂量CT图片质量的改善之中,多方向梯度算子抗干扰能力强,能够去除图片中的噪音,同时注重细节恢复,有效获取图片的细节纹理,大大提高网络的人眼感受效果。
-