-
公开(公告)号:CN119169488A
公开(公告)日:2024-12-20
申请号:CN202411224092.1
申请日:2024-09-03
Applicant: 广东工业大学
IPC: G06V20/17 , G06V20/10 , G06V10/764 , G06V10/774 , G06V10/82
Abstract: 本发明公开了一种基于深度学习的雾霾场景输电线路多尺寸缺陷识别方法,涉及识别方法技术领域。本发明包括以下步骤:Step1:构建雾霾场景下的输电线路缺陷数据集;Step2:采用图像雾化算法对输电线路缺陷数据集进行数据预处理;Step3:构建一种雾霾场景下的输电线路缺陷识别算法,用于识别雾霾场景下输电线路的模糊缺陷目标和小尺寸缺陷目标;Step4:在步骤Step3中构建的输电线路缺陷识别算法基础上进行算法训练和验证。本发明通过在采集输电线路缺陷数据集后,对图像数据进行加雾的数据预处理,模拟雾霾场景下的输电线路缺陷数据。
-
公开(公告)号:CN118314532B
公开(公告)日:2024-08-27
申请号:CN202410741819.7
申请日:2024-06-11
Applicant: 广东工业大学
IPC: G06V20/52 , G06N3/045 , G06N3/0464 , G06N3/084 , G06V10/40 , G06V10/764 , G06V10/766 , G06V10/82
Abstract: 本发明公开了一种基于深度学习的变电站红外图像老鼠识别方法,属于深度学习技术领域,包括以下步骤:获取变电站内老鼠的红外图像数据集,并进行预处理;基于特征提取模块、空间金字塔池化结构以及多感知目标检测头,构建变电站红外图像老鼠检测算法;基于预处理后的红外图像数据集对所述变电站红外图像老鼠检测算法进行训练;将训练后的变电站红外图像老鼠检测算法部署在变电站的红外摄像头中,对变电站内老鼠进行实时监控和预警。本发明建立了易于训练的变电站红外图像老鼠目标检测网络,具有高准确率和高泛化性的特点,建模完成后可以部署在各个变电站场景中的红外摄像头内,并建立相对应的预警与监控系统,实现对老鼠目标的实时监控。
-
公开(公告)号:CN118840322B
公开(公告)日:2025-02-14
申请号:CN202410825920.0
申请日:2024-06-25
Applicant: 广东工业大学
IPC: G06T7/00 , G06V20/17 , G06V20/10 , G06V10/25 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464
Abstract: 本发明公开的属于道路病害检测技术领域,具体为一种基于深度学习的道路病害检测方法,包括利用RDDA算法进行检测的步骤,具体如下:道路病害数据集构建、构建图像特征提取模块、设计深度可分离无参注意力机制卷积模块、提取特征图深层特征、设计空间金字塔自适应池化融合模块、使用FPN模块进行特征融合、设计NWD‑EIoU损失函数、使用Head检测头检测、模型的训练和验证、将模型进行应用,本发明有效的解决了当前道路病害检测算法参数量大、小目标病害检测精度不足、复杂背景下道路病害检测效果差的问题,从而使得本发明的算法参数量更低,能够适合边缘设备的部署,满足道路病害检测的轻量化和实时性需求。
-
公开(公告)号:CN118314442B
公开(公告)日:2024-09-20
申请号:CN202410741672.1
申请日:2024-06-11
Applicant: 广东工业大学
Abstract: 本发明公开了一种基于深度学习的输电杆塔异物隐患识别方法,包括:构建输电杆塔异物原始数据集并进行预处理,获得处理后的输电杆塔异物数据集;构建基于深度学习的输电杆塔异物隐患识别模型,基于处理后的输电杆塔异物数据集对输电杆塔异物隐患识别模型进行训练,获得训练后的输电杆塔异物隐患识别模型;基于训练后的输电杆塔异物隐患识别模型对输电杆塔中的异物进行识别,获得识别结果。本发明有效提升了在复杂环境下的异物检测准确率和系统的计算效率,还增强了模型在处理不规则和多尺度特征时的适应性和鲁棒性,显著提高了输电杆塔异物隐患别模型的实用性和可靠性。
-
公开(公告)号:CN118314532A
公开(公告)日:2024-07-09
申请号:CN202410741819.7
申请日:2024-06-11
Applicant: 广东工业大学
IPC: G06V20/52 , G06N3/045 , G06N3/0464 , G06N3/084 , G06V10/40 , G06V10/764 , G06V10/766 , G06V10/82
Abstract: 本发明公开了一种基于深度学习的变电站红外图像老鼠识别方法,属于深度学习技术领域,包括以下步骤:获取变电站内老鼠的红外图像数据集,并进行预处理;基于特征提取模块、空间金字塔池化结构以及多感知目标检测头,构建变电站红外图像老鼠检测算法;基于预处理后的红外图像数据集对所述变电站红外图像老鼠检测算法进行训练;将训练后的变电站红外图像老鼠检测算法部署在变电站的红外摄像头中,对变电站内老鼠进行实时监控和预警。本发明建立了易于训练的变电站红外图像老鼠目标检测网络,具有高准确率和高泛化性的特点,建模完成后可以部署在各个变电站场景中的红外摄像头内,并建立相对应的预警与监控系统,实现对老鼠目标的实时监控。
-
公开(公告)号:CN119762750A
公开(公告)日:2025-04-04
申请号:CN202411771193.0
申请日:2024-12-04
Applicant: 广东工业大学
IPC: G06V10/25 , G06V10/44 , G06V10/774 , G06V10/80 , G06V10/82 , G06V20/10 , G06N3/0464
Abstract: 本发明公开一种光学遥感小型船舶检测方法和装置、系统、存储介质,包括:步骤S1、获取光学遥感小型船舶数据集;步骤S2、对光学遥感小型船舶数据集进行预处理,并对预处理后的光学遥感小型船舶数据集进行划分,得到训练集和测试集;步骤S3、根据预处理后光学遥感小型船舶数据集,构建光学遥感小型船舶检测模型;步骤S4、根据训练集训练光学遥感小型船舶检测模型;步骤S5、将测试集输入到训练好的光学遥感小型船舶检测模型中,得到船舶类型和位置。采用本发明的技术方案,提高小型船舶检测的精度。
-
公开(公告)号:CN119723333A
公开(公告)日:2025-03-28
申请号:CN202411771670.3
申请日:2024-12-04
Applicant: 广东工业大学
IPC: G06V20/10 , G06V10/44 , G06V10/52 , G06V10/774 , G06V10/26 , G06V10/80 , G06V10/82 , G06N3/0464
Abstract: 本发明公开一种高分辨率遥感图像滑坡识别方法和装置、系统、存储介质,包括:步骤S1、获取高分辨率遥感滑坡数据集;步骤S2、根据高分辨率遥感滑坡数据集,构建高分辨率遥感滑坡提取网络HRLE‑Net;步骤S3、划分高分辨率遥感滑坡数据集,得到训练集和测试集;步骤S4、根据训练集训练高分辨率遥感滑坡提取网络HRLE‑Net;步骤S5、将测试集输入到训练好的高分辨率遥感滑坡提取网络HRLE‑Net中,提取滑坡区域。采用本发明的技术方案,实现对滑坡区域的准确识别。
-
公开(公告)号:CN118781479A
公开(公告)日:2024-10-15
申请号:CN202410716377.0
申请日:2024-06-04
Applicant: 广东工业大学
IPC: G06V20/10 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于位置注意力和多尺度残差特征的遥感影像建筑物提取方法,涉及建筑物提取技术领域。本发明包括以下步骤:Step1:预处理遥感影像数据集,获取遥感影像数据集,根据得到的遥感影像数据集制作遥感影像样本标签,将RGB遥感影像数据集与对应的遥感影像单通道数字标签分别进行垂直翻转的数据增强操作。本发明通过遥感影像建筑物提取模型FCM‑Net构建的特征解码模块中使用跳跃连接和深度监督设计。跳跃连接将来自不同尺度特征图的高级语义和低级语义相结合,减少编码器和解码器之间的语义差距;深度监督设计为在特征解码模块的第0层的每一个输出块(X0,1、X0,2、X0,3和和X0,4)后添加1×1卷积和FPReLu激活函数,以缓解梯度消失问题,加快收敛速度。
-
公开(公告)号:CN118332528B
公开(公告)日:2024-08-30
申请号:CN202410767432.9
申请日:2024-06-14
Applicant: 广东工业大学
IPC: G06F21/14 , G06F40/253 , G06N3/0455 , G06N3/08 , G06F21/60
Abstract: 本发明属于代码混淆技术领域,并公开了一种基于深度学习的代码混淆方法、系统、设备及介质,包括:对分支语句进行预处理,得到AST语法树的节点‑编号序列和叶子节点值‑编号序列;基于序列数据构建AST语法树中根节点到各叶子节点的路径集合;将路径集合输入代码混淆模型中,得到第一密文;基于DES算法对第一密文进行二次加密,得到第二密文;构建解密模型,基于解密模型构建解密函数;将第二密文输入解密函数中进行解密,先得到对应的第一密文,然后解密第一密文,最后得到对应分支语句的判断条件;将分支语句的判断条件替换为对解密函数的调用,实现代码混淆。本发明技术方案能够让混淆的代码更具隐蔽性,提高程序抗逆向分析能力。
-
公开(公告)号:CN118332528A
公开(公告)日:2024-07-12
申请号:CN202410767432.9
申请日:2024-06-14
Applicant: 广东工业大学
IPC: G06F21/14 , G06F40/253 , G06N3/0455 , G06N3/08 , G06F21/60
Abstract: 本发明属于代码混淆技术领域,并公开了一种基于深度学习的代码混淆方法、系统、设备及介质,包括:对分支语句进行预处理,得到AST语法树的节点‑编号序列和叶子节点值‑编号序列;基于序列数据构建AST语法树中根节点到各叶子节点的路径集合;将路径集合输入代码混淆模型中,得到第一密文;基于DES算法对第一密文进行二次加密,得到第二密文;构建解密模型,基于解密模型构建解密函数;将第二密文输入解密函数中进行解密,先得到对应的第一密文,然后解密第一密文,最后得到对应分支语句的判断条件;将分支语句的判断条件替换为对解密函数的调用,实现代码混淆。本发明技术方案能够让混淆的代码更具隐蔽性,提高程序抗逆向分析能力。
-
-
-
-
-
-
-
-
-