-
公开(公告)号:CN113971797B
公开(公告)日:2025-02-07
申请号:CN202111473235.9
申请日:2021-12-02
Applicant: 山东海量信息技术研究院 , 济南大学
IPC: G06V20/59 , G06V10/44 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明属于计算机视觉技术领域,提供了一种基于动作行为特征的危险驾驶行为识别方法及系统,该网络以CenterNet为目标检测主体,将ResNet‑50和Hourglass网络各自做了改进并结合,用作CenterNet的主干。为了提升精度和速度,在其他多个模块也都做了改进,并采集自然条件下的驾驶员危险驾驶行为数据集用于评估网络,实验部分分别做了消融实验和对比实验,证明每一个模块的改进都可以对模型性能产生积极影响。
-
公开(公告)号:CN113971797A
公开(公告)日:2022-01-25
申请号:CN202111473235.9
申请日:2021-12-02
Applicant: 山东海量信息技术研究院 , 济南大学
Abstract: 本发明属于计算机视觉技术领域,提供了一种基于动作行为特征的危险驾驶行为识别方法及系统,该网络以CenterNet为目标检测主体,将ResNet‑50和Hourglass网络各自做了改进并结合,用作CenterNet的主干。为了提升精度和速度,在其他多个模块也都做了改进,并采集自然条件下的驾驶员危险驾驶行为数据集用于评估网络,实验部分分别做了消融实验和对比实验,证明每一个模块的改进都可以对模型性能产生积极影响。
-
公开(公告)号:CN114842400A
公开(公告)日:2022-08-02
申请号:CN202210565190.6
申请日:2022-05-23
Applicant: 山东海量信息技术研究院 , 济南大学
IPC: G06V20/40 , G06V10/40 , G06V10/74 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/04 , G06N3/08 , G06K9/62
Abstract: 本发明公开了基于残差块和特征金字塔的视频帧生成方法及系统;其中所述方法,包括:获取待处理的前后两帧图像;将获取的前后两帧图像,输入到训练后的视频帧生成模型中,输出生成的中间帧图像;其中,视频帧生成模型包括相互连接的改进后的编码器和改进后的解码器;所述改进后的编码器,是通过将U‑Net网络编码器的卷积层替换为残差块得到;所述改进后的编码器,用于提取前后两帧图像的空时特征;所述改进后的解码器,是通过将U‑Net网络的解码器设置为特征金字塔网络得到;所述改进后的解码器,用于对提取的特征进行特征融合,以生成中间帧图像。
-
公开(公告)号:CN115170402A
公开(公告)日:2022-10-11
申请号:CN202210492821.6
申请日:2022-05-07
Applicant: 山东海量信息技术研究院 , 济南大学
Abstract: 本发明提出了基于循环残差卷积和过度参数化卷积的帧插入方法及系统,将获取的前后两帧图片拼接后输入到基于循环卷积和残差操作的特征提取器中,提取深度特征;利用深度特征得到两帧图片中每个像素的偏移向量和权重,根据偏移向量和权重对每个像素进行扭曲,得到扭曲后的两帧图片;通过基于Gr i dNet的帧生成网络对扭曲后的前后两帧图片进行融合,生成新的插入帧;本发明通过基于循环残差卷积的特征提取器提取更准确的深度特征,过度参数化卷积提高深度网络训练的速度,并帮助网络在不增加计算复杂度的情况下提高网络性能,提高插入帧的视觉质量。
-
公开(公告)号:CN114883001A
公开(公告)日:2022-08-09
申请号:CN202210570384.5
申请日:2022-05-24
Applicant: 山东海量信息技术研究院 , 济南大学
Abstract: 本发明公开了基于异质信息网络的疾病预测系统,包括:获取模块,其被配置为:获取待预测患者的当前电子病历;疾病预测模块,其被配置为:将待预测患者的当前电子病历,输入到训练后的疾病预测模型中,输出疾病预测结果;其中,疾病预测模型的工作原理为:对待预测患者的当前电子病历进行数据扩充,基于扩充后的数据构建电子病历异质图;在电子病历异质图上,基于元路径的学习表示进行电子病历的嵌入表示,通过注意力机制进行元路径邻居节点的聚合;最终实现对待预测患者的疾病预测。以便准确预测患者是否存在潜在疾病,对患者做出准确地预测。
-
公开(公告)号:CN110472690A
公开(公告)日:2019-11-19
申请号:CN201910768987.4
申请日:2019-08-20
Applicant: 济南大学
Abstract: 本公开提供一种基于自适应模糊聚类的热电工业数据异常检测方法及系统。其中,热电工业数据异常检测方法包括实时获取d维度的热电工业数据作为样本,按照时间顺序存储至数据集S;将数据集S所分布空间的每一维划均分为相等的m个间隔段,生成不相交的网格;将数据集S中的映射到网格中计算各个网格的重心,作为新的数据点来代表相应网格内所包含的热电工业数据,形成网格重心数据集;利用自适应模糊聚类算对网格重心数据集P进行聚类,得到所有聚类中心;计算网格重心数据集中每个数据点所对应网格包含的热电工业数据与其最邻近的聚类中心的距离并与预设距离阈值比较,进而判断热电工业数据是否异常。
-
公开(公告)号:CN110459285A
公开(公告)日:2019-11-15
申请号:CN201910759623.X
申请日:2019-08-16
Applicant: 济南大学
IPC: G16H10/60 , G16H50/70 , G06F16/215 , G06F16/2458 , G06F16/29
Abstract: 本公开公开了疾病就诊数据的预处理方法、系统、设备及介质,包括:从医院服务器获取患者就诊记录;对获取的患者就诊记录进行数据清洗;对数据单位不统一的数据,转换到同一个数据单位;将名称不同但是含义相同的数据名称,转换到同一个数据名称;将汉字进行数值化处理;采用最大最小值归一化处理算法,对数据进行归一化处理;对患者就诊记录所对应的医院地理位置进行处理,得到预处理后的疾病就诊数据。计算机处理数据时,对分类型数据不敏感甚至出错,通过科学性的方法把具有多种分类型数据维度的医疗数据转化为机器可处理的数据,对后续数据挖掘出有价值信息具有重要意义。
-
公开(公告)号:CN110135740A
公开(公告)日:2019-08-16
申请号:CN201910419626.9
申请日:2019-05-20
Applicant: 济南大学
IPC: G06Q10/06 , G06K9/62 , G06F16/2455 , G06F16/2458
Abstract: 本公开提出了面向燃煤锅炉流程对象的实时知识发现方法及系统,包括:对采集到的锅炉的生产状态参数数据进行时序调整,得到正确的时序数据;采用基于滑动窗口的数据流聚类方法,保存每次聚类中心结果,每次对比上次聚类结果,如果相邻两次聚类结果的差值在设定范围内,不做任何操作,继续等待下一个数据流;否则,对变化趋势数学公式进行修改更新适用于最新的生产状态;继续进行后续知识发现的过程获得新的公式,通过关联规则算法进行关联链挖掘,得到各个生产参数最新的影响关系与变化规律,生成各参数之间的关联链;最后通过柔性神经树对数据进行建模预测,输出数据的新的变化趋势数学公式,从而辅助调整生产流程参数。
-
公开(公告)号:CN110019845A
公开(公告)日:2019-07-16
申请号:CN201910303799.4
申请日:2019-04-16
Applicant: 济南大学
IPC: G06F16/36 , G06F16/332
Abstract: 本公开公开了一种基于知识图谱的社区演化分析方法及装置,该方法包括:调取数据库中某领域特定时间的文献信息,构建待分析关系网络;检测每个时间步的待分析关系网络的社区结构;构建相同无序对比例矩阵计算相似性阈值,根据两个社区的所述相同无序对比例的值与相似性阈值判断两个社区间的相似性;根据社区间的相似性构建社区相似矩阵,进行社区匹配,采用非连续时间步跟踪社区演化依次获得每个社区的演化序列,同时检测社区生命周期中的关键事件,并统计所述关键事件的数量来反映社区的演化状况。
-
-
-
-
-
-
-
-
-