基于自引导和部件自适应融合的多查询车辆重识别方法

    公开(公告)号:CN117523357A

    公开(公告)日:2024-02-06

    申请号:CN202311513284.X

    申请日:2023-11-14

    Applicant: 安徽大学

    Abstract: 本发明公开一种基于自引导和部件自适应融合的多查询网络,获取车辆的图片数据集,构建基于自引导和部件自适应融合的多查询网络,使用基线车辆图片的原始特征,自引导更新模块为每组多个查询更新原始特征,自适应融合模块将更新特征自适应进行融合,通过重识别损失约束单部件融合特征和单部件更新特征,对基于自引导和部件自适应融合的多查询网络上进行训练和验证,再将训练所得最好的基于自引导和部件自适应融合的多查询网络在测试集上进行测试。发明的自引导更新模块利用同一组内多个查询的集体信息来指导单个查询,自适应融合模块能够自适应地融合来自不同查询的相同部分的有效信息;可更细粒度地处理每张照片的信息,增强特征表示并提高辨别能力。

    基于MA-RBC模型的水稻病虫害命名实体识别方法

    公开(公告)号:CN117291189A

    公开(公告)日:2023-12-26

    申请号:CN202311575611.4

    申请日:2023-11-24

    Applicant: 安徽大学

    Abstract: 本申请涉及一种基于MA‑RBC模型的水稻病虫害命名实体识别方法,其中,该基于MA‑RBC模型的水稻病虫害命名实体识别方法包括:获取待识别数据;通过训练后的MA‑RBC模型对所述待识别数据中的水稻病虫害命名实体进行识别,得到目标水稻病虫害命名实体;其中,所述MA‑RBC模型包括依次连接的预训练语言层、循环神经网络层、多头自注意力层和统计层。解决了MA‑RBC模型模型识别的准确率问题,实现了提高水稻病虫害实体识别的准确率。所述鲁棒优化的波特预训练层采用动态掩码进行预训练,且所述鲁棒优化的波特预训练层的最大输入序列长度为512,从多个数据源中获取样本数据。通过本申请,解决了MA‑RBC模型模型识别的准确率问题,实现了提高水稻病虫害实体识别的准确率。

    一种多尺度跨平台行人重识别方法

    公开(公告)号:CN117671582A

    公开(公告)日:2024-03-08

    申请号:CN202311542794.X

    申请日:2023-11-15

    Applicant: 安徽大学

    Abstract: 本发明公开了一种多尺度跨平台行人重识别方法,包括:获取行人图片数据集,将行人图片数据集划分为训练集和测试集;采用ColorJitter函数,数据增强行人图片数据集中图像;建立初始跨平台行人重识别网络,将训练集中的图片分批输入初始跨平台行人重识别网络中,输出分类结果;通过总损失函数计算分类结果的损失,并利用梯度下降算法更新,以及通过反向传播优化初始跨平台行人重识别网络,获取优化跨平台行人重识别网络;将测试集输入至优化跨平台行人重识别网络中,获取识别精度;判断识别精度,若识别精度不满足要求,则重复训练过程,直至满足精度要求。通过本发明公开的多尺度跨平台行人重识别方法,能够用于不同平台的行人重识别。

    基于结构信息引导以车为中心的多模态预训练系统及方法

    公开(公告)号:CN117475278A

    公开(公告)日:2024-01-30

    申请号:CN202311434166.X

    申请日:2023-10-30

    Applicant: 安徽大学

    Abstract: 本发明公开了基于结构信息引导以车为中心的多模态预训练系统及方法,系统包括掩码自编码器、结构先验模块、语义先验模块及预训练模块;掩码自编码器用于对输入图像进行掩码并对掩码后的车辆图像进行重构;结构先验模块用于提取输入图像轮廓信息,利用轮廓信息和掩码自编码器的预测信息构建蒸馏损失;语义先验模块提取图像的视觉特征和文本描述的语义特征,计算视觉特征、语义特征及掩码自编码器模块的解码特征之间的相似度分布,构建跨模态对比学习损失;预训练模块用于不断进行预训练,直到达到迭代次数或者对应的损失函数值最小时停止训练;本发明的优点在于:提升了主干网络的特征提取能力,提升了以车为中心的感知任务的性能。

    基于水稻病虫害知识图谱的问答系统及方法

    公开(公告)号:CN117436531A

    公开(公告)日:2024-01-23

    申请号:CN202311763394.1

    申请日:2023-12-21

    Applicant: 安徽大学

    Abstract: 本申请涉及一种基于水稻病虫害知识图谱的问答系统及方法,其中,基于水稻病虫害知识图谱的问答系统包括:病虫害关系问答模块;所述病虫害关系问答模块包括第一接口单元、信息抽取单元和检索单元;所述第一接口单元用于获取用户输入的当前问题,并输出相应所述当前问题的回复;所述信息抽取单元用于抽取所述当前问题中的主实体,以及用于通过依存句法分析抽取所述当前问题中的目标关系;所述检索单元用于在预先构建的知识图谱中检索与所述主实体具有所述目标关系的目标客实体,并根据所述目标客实体生成所述当前问题的回复。通过本申请,解决了相关技术中存在针对水稻病虫害问答系统的回答缺少可解释性的问题。

    基于语义特征增强的车牌协同识别方法及系统

    公开(公告)号:CN117292367A

    公开(公告)日:2023-12-26

    申请号:CN202311168198.X

    申请日:2023-09-11

    Applicant: 安徽大学

    Abstract: 本发明提供基于语义特征增强的车牌协同识别方法及系统,包括:利用行数处理模块处理标准车牌,以获取标准、非标车牌对;利用Resnet特征提取网络进行特征提取,得到车牌视觉特征;以序列建模网络发掘获取车牌语义特征;以编码器分别进行单张车牌识别、车牌协同识别;根据车牌语义特征,进行单张车牌识别操作,以得到单张车牌识别结果,对单张车牌识别结果进行损失计算和训练优化,以得到适用单张车牌识别结果;进行协同识别序列建模,据以进行车牌协同识别操作,以得到车牌协同识别结果;对车牌协同识别结果,进行损失计算及训练优化,以得到适用车牌协同识别结果。本发明解决了车牌识别结果准确性较低,以及特定场景下识别效果较差的技术问题。

Patent Agency Ranking