-
公开(公告)号:CN119785221A
公开(公告)日:2025-04-08
申请号:CN202411983904.0
申请日:2024-12-31
Applicant: 安徽大学
IPC: G06V20/10 , G06V10/40 , G06V10/54 , G06V10/56 , G06N20/00 , G06N3/126 , G06V10/774 , G06V10/764 , G06N5/01
Abstract: 本发明涉及基于多时相多特征与可解释性机器学习算法相结合的小麦赤霉病遥感预测方法,与现有技术相比解决了难以基于多时多特征相结合提升赤霉病预测精度的缺陷。本发明包括以下步骤:单时相和多时相数据的获取及预处理;构建多时相特征;小麦赤霉病最优特征的筛选;小麦赤霉病预测模型的构建和训练;待预测遥感影像的获取;小麦赤霉病遥感预测结果的获得。本发明结合了小麦的多时相和多特征,基于模拟退火算法寻找最优的XGBoost超参数训练模型,且获得理性的分类模型,实现了小麦赤霉病遥感影像的精准预测。
-
公开(公告)号:CN119671930A
公开(公告)日:2025-03-21
申请号:CN202411427034.9
申请日:2024-10-14
Applicant: 安徽大学
IPC: G06T7/00 , G06V10/82 , G06V10/764 , G06V10/44 , G06V10/80 , G06N3/0464 , G06N3/084
Abstract: 本发明涉及一种融合图像高频信息的玉米叶片病害识别方法,与现有技术相比解决了深度模型在识别复杂背景下玉米叶病害图像上难以学习到高频细节信息特征的缺陷。本发明包括以下步骤:获取玉米叶片图像并进行预处理;构建玉米叶片病害识别模型;玉米叶片病害识别模型的训练;待识别玉米叶片图像的获取;玉米叶片图像识别结果的获得。本发明将图像高频信息融合到轻量级MobileNetV3‑Large网络中,提出了一种融合图像高频信息的玉米叶病害识别模型,该模型具有更好的拟合能力,提高了对复杂环境下玉米叶病害的识别性能。
-