-
公开(公告)号:CN115550023B
公开(公告)日:2025-04-22
申请号:CN202211174690.3
申请日:2022-09-26
Applicant: 安徽大学
IPC: H04L9/40
Abstract: 本发明属于大数据分析领域,具体涉及一种抑制图拆解的图攻击方法,以及采用该方法网络的图结构的防护系统和装置。图攻击方法包括如下步骤:S1:将待处理的网络采用图结构进行表征;S2:绘制图结构在基于度值和基于集体影响力两种拆解策略下的ANC曲线;S3:基于ANC曲线确定网络中的目标节点集;S4:基于两种拆解路径的目标节点集构建用于评估基于原始图和攻击后的图在混合的攻击策略下产生的拆解序列的差异的损失函数;S5:预设约束条件和迭代轮次,然后利用损失函数计算链路梯度,并以链路梯度为指引对满足约束条件的边进行迭代删除,得到增强图结构;本发明克服了现有的各类网络系统对图拆解方法的抵御性能不强,容易遭受网络攻击的问题。
-
公开(公告)号:CN115858868A
公开(公告)日:2023-03-28
申请号:CN202211536223.0
申请日:2022-12-01
Applicant: 安徽大学
IPC: G06F16/901 , G06F16/9035 , G06F18/22
Abstract: 本发明公开了基于噪声图流的局部社区检测方法及其系统、终端与介质。所述检测方法用于从文件系统中以数据流的方式读取图集中每一张图中的边,这些边的集合定义为图流,通过检测图流中的每一条边获得待检测社区。所述检测方法包括:定义边的集合和节点集合;检测噪声边;扩展待检测社区的节点集合;修剪扩展后的节点集合形成所述待检测社区。本发明在面对大规模数据集时面临的巨大内存开销,以及检测的准确度容易受到图中噪声边的影响,通过流式读取的方式极大的减少了内存的开销,使得该方法能够应用于大规模数据图的应用场景,并且通过噪声边的检测以及定义了一个健壮性的节点隶属度指标来减少噪声边对社区检测准确度的影响,获得较高的准确度。
-
公开(公告)号:CN115640427A
公开(公告)日:2023-01-24
申请号:CN202211100183.5
申请日:2022-09-08
Applicant: 安徽大学
IPC: G06F16/901 , G06Q50/00
Abstract: 本发明属于大数据分析领域,具体涉及一种社交网络中基于人格信息的网络结构隐藏方法、装置。该网络结构隐藏方法包括如下步骤:S1:基于社交网络中的用户关系图谱转换为图形结构数据。S2:基于每个用户发布的社交内容,通过文本分析工具生成每个用户的五维人格向量。S3:采用多元线性回归的方法基于网络结构的各项中心性指标分别构建用于表征所有用户各项人格的人格特征矩阵。S4:通过进化算法生成在度分量上人格变化最大的匿名k度序列。S5:根据获取的匿名k度序列对原始的图G进行相应的修改,从而生成满足k度匿名图的新图G′。本发明解决了现有现有社交网络中的信息发布可能存在泄露用户人格特征或隐私信息的问题。
-
公开(公告)号:CN115550023A
公开(公告)日:2022-12-30
申请号:CN202211174690.3
申请日:2022-09-26
Applicant: 安徽大学
IPC: H04L9/40
Abstract: 本发明属于大数据分析领域,具体涉及一种抑制图拆解的图攻击方法,以及采用该方法网络的图结构的防护系统和装置。图攻击方法包括如下步骤:S1:将待处理的网络采用图结构进行表征;S2:绘制图结构在基于度值和基于集体影响力两种拆解策略下的ANC曲线;S3:基于ANC曲线确定网络中的目标节点集;S4:基于两种拆解路径的目标节点集构建用于评估基于原始图和攻击后的图在混合的攻击策略下产生的拆解序列的差异的损失函数;S5:预设约束条件和迭代轮次,然后利用损失函数计算链路梯度,并以链路梯度为指引对满足约束条件的边进行迭代删除,得到增强图结构;本发明克服了现有的各类网络系统对图拆解方法的抵御性能不强,容易遭受网络攻击的问题。
-
-
-