-
公开(公告)号:CN110736750A
公开(公告)日:2020-01-31
申请号:CN201911033059.X
申请日:2019-10-28
Applicant: 安徽大学
IPC: G01N21/88
Abstract: 本发明特别涉及一种基于多角度田间高清成像的小麦赤霉病检测方法,包括如下步骤:(A)将疏松架放置在田间待检测区域,让麦穗从疏松架的网格孔中穿过;(B)启动拍摄单元,采集M张多个角度的麦穗图像;(C)对M张麦穗图像进行处理,识别图像中的麦穗以及该麦穗对应的网格,得到每张麦穗图像中每株麦穗的麦穗区域和染病区域,以此计算出麦穗的病害严重度;(D)计算第n个麦穗病害严重度均值。通过多角度拍摄,可以避免某个角度下麦穗因遮挡而导致的结果不准确现象,为了匹配多角度图片中相同的麦穗,这里通过疏松架对麦穗进行分割,保证后续麦穗匹配的准确度和处理速度,同时还能让麦穗更整齐,拍摄的图片处理效果更佳。
-
公开(公告)号:CN110132862A
公开(公告)日:2019-08-16
申请号:CN201910461294.0
申请日:2019-05-30
Applicant: 安徽大学
IPC: G01N21/27
Abstract: 本发明涉及病虫害检测技术领域,特别涉及一种小麦赤霉病检测专属病情指数构建方法,包括如下步骤:(A)采集不同染病程度的多个小麦麦穗作为样本;(B)利用高光谱相机拍摄样本中每个小麦麦穗的高光谱图像;(C)对高光谱图像进行处理,得到每个小麦麦穗的光谱曲线;(D)利用随机森林算法对光谱波段特征进行度量,筛选出对赤霉病敏感的两个特征波段;(E)根据特征波段的光谱反射率值计算小麦赤霉病检测专属病情指数FDI;还公开了基于该病情指数的小麦赤霉病病害等级检测方法。该方法能够快速、准确地确定出高光谱图像中最能够体现病害情况的特征波段,检测时,采用波段少、计算方便、速度快,具有非常好的应用推广价值。
-
公开(公告)号:CN110089297B
公开(公告)日:2021-11-26
申请号:CN201910414703.1
申请日:2019-05-18
Applicant: 安徽大学
Abstract: 本发明特别涉及一种小麦赤霉病大田环境下病情严重度诊断方法,包括以下步骤:(A)在麦田采集感染小麦赤霉病麦穗45度角图像;(B)用田间麦穗分割模型分割病害图像得到麦穗区域;用小麦赤霉病分割模型分割病害图像得到病斑区域;(C)采用凹点匹配法分割麦穗和病斑的粘连区域,得到麦田中每株麦穗的面积和病斑面积;(D)计算每株麦穗的病斑面积和麦穗面积的比值R,判断R是否大于设定阈值,若R大于设定阈值,则判定该株麦穗为病穗;(E)计算麦田中病穗数量与总穗数量的比值X,并根据比值X对病情进行分级;并公开了对应的检测装置。该方法可以实现大田环境下小麦赤霉病病情诊断,诊断速度快且精确度高。
-
公开(公告)号:CN110736750B
公开(公告)日:2022-03-04
申请号:CN201911033059.X
申请日:2019-10-28
Applicant: 安徽大学
IPC: G01N21/88
Abstract: 本发明特别涉及一种基于多角度田间高清成像的小麦赤霉病检测方法,包括如下步骤:(A)将疏松架放置在田间待检测区域,让麦穗从疏松架的网格孔中穿过;(B)启动拍摄单元,采集M张多个角度的麦穗图像;(C)对M张麦穗图像进行处理,识别图像中的麦穗以及该麦穗对应的网格,得到每张麦穗图像中每株麦穗的麦穗区域和染病区域,以此计算出麦穗的病害严重度;(D)计算第n个麦穗病害严重度均值。通过多角度拍摄,可以避免某个角度下麦穗因遮挡而导致的结果不准确现象,为了匹配多角度图片中相同的麦穗,这里通过疏松架对麦穗进行分割,保证后续麦穗匹配的准确度和处理速度,同时还能让麦穗更整齐,拍摄的图片处理效果更佳。
-
公开(公告)号:CN110089297A
公开(公告)日:2019-08-06
申请号:CN201910414703.1
申请日:2019-05-18
Applicant: 安徽大学
Abstract: 本发明特别涉及一种小麦赤霉病大田环境下病情严重度诊断方法,包括以下步骤:(A)在麦田采集感染小麦赤霉病麦穗45度角图像;(B)用田间麦穗分割模型分割病害图像得到麦穗区域;用小麦赤霉病分割模型分割病害图像得到病斑区域;(C)采用凹点匹配法分割麦穗和病斑的粘连区域,得到麦田中每株麦穗的面积和病斑面积;(D)计算每株麦穗的病斑面积和麦穗面积的比值R,判断R是否大于设定阈值,若R大于设定阈值,则判定该株麦穗为病穗;(E)计算麦田中病穗数量与总穗数量的比值X,并根据比值X对病情进行分级;并公开了对应的检测装置。该方法可以实现大田环境下小麦赤霉病病情诊断,诊断速度快且精确度高。
-
公开(公告)号:CN110132862B
公开(公告)日:2021-07-16
申请号:CN201910461294.0
申请日:2019-05-30
Applicant: 安徽大学
IPC: G01N21/27
Abstract: 本发明涉及病虫害检测技术领域,特别涉及一种小麦赤霉病检测专属病情指数构建方法,包括如下步骤:(A)采集不同染病程度的多个小麦麦穗作为样本;(B)利用高光谱相机拍摄样本中每个小麦麦穗的高光谱图像;(C)对高光谱图像进行处理,得到每个小麦麦穗的光谱曲线;(D)利用随机森林算法对光谱波段特征进行度量,筛选出对赤霉病敏感的两个特征波段;(E)根据特征波段的光谱反射率值计算小麦赤霉病检测专属病情指数FDI;还公开了基于该病情指数的小麦赤霉病病害等级检测方法。该方法能够快速、准确地确定出高光谱图像中最能够体现病害情况的特征波段,检测时,采用波段少、计算方便、速度快,具有非常好的应用推广价值。
-
公开(公告)号:CN110132856B
公开(公告)日:2021-06-25
申请号:CN201910415768.8
申请日:2019-05-18
Applicant: 安徽大学
IPC: G01N21/25
Abstract: 本发明特别涉及一种小麦赤霉病染病籽粒识别的光谱病害指数构建,包括如下步骤:(A)挑选健康和染病小麦籽粒作为样本,采集得到两条平均光谱曲线;(B)分别对两条平均光谱曲线进行一阶微分处理得到两条一阶微分光谱曲线;(C)根据两条平均光谱曲线求解波长λ1,根据两条一阶微分光谱曲线求解波长λ2;(D)计算每个小麦籽粒的光谱病害指数;(E)根据健康和染病小麦籽粒的光谱病害指数分别画出其频数直方图;(F)对两个频数直方图进行曲线拟合,取两条拟合曲线的交点为判断阈值;还公开了利用该模型进行小麦赤霉病检测的方法。本发明构建的光谱病害指数,具有无损、计算速度快、精度高、稳定性好的应用优势。
-
公开(公告)号:CN110211099A
公开(公告)日:2019-09-06
申请号:CN201910414797.2
申请日:2019-05-18
Applicant: 安徽大学
Abstract: 本发明涉及特别涉及一种综合麦穗正反面病情的小麦赤霉病检测方法,包括以下步骤:采集麦穗的正面图像和反面图像;对麦穗的正面图像和反面图像分别进行处理,得到正面图像中麦穗面积S11和病斑区域面积S12以及反面图像中麦穗面积S21和病斑区域面积S22;(C)按如下公式计算麦穗的病斑面积和麦穗面积比值:R=(S12+S22)/(S11+S21);(D)根据比值R以及国家标准对麦穗进行病害分级;并公开了对应的检测装置。相较于以往的单面检测而言,本发明通过对正反两面的麦穗进行分割,并计算正反两面的麦穗面积和病斑面积,把正反两面的病害面积和麦穗面积线性相加,最后,计算病害面积与麦穗面积的比值,划分病害等级,为植保人员调查病情和精准施药防治病害提供更加可靠的技术支持。
-
公开(公告)号:CN110132856A
公开(公告)日:2019-08-16
申请号:CN201910415768.8
申请日:2019-05-18
Applicant: 安徽大学
IPC: G01N21/25
Abstract: 本发明特别涉及一种小麦赤霉病染病籽粒识别的光谱病害指数构建,包括如下步骤:(A)挑选健康和染病小麦籽粒作为样本,采集得到两条平均光谱曲线;(B)分别对两条平均光谱曲线进行一阶微分处理得到两条一阶微分光谱曲线;(C)根据两条平均光谱曲线求解波长λ1,根据两条一阶微分光谱曲线求解波长λ2;(D)计算每个小麦籽粒的光谱病害指数;(E)根据健康和染病小麦籽粒的光谱病害指数分别画出其频数直方图;(F)对两个频数直方图进行曲线拟合,取两条拟合曲线的交点为判断阈值;还公开了利用该模型进行小麦赤霉病检测的方法。本发明构建的光谱病害指数,具有无损、计算速度快、精度高、稳定性好的应用优势。
-
公开(公告)号:CN211061403U
公开(公告)日:2020-07-21
申请号:CN201921827892.7
申请日:2019-10-28
Applicant: 安徽大学
Abstract: 本实用新型涉及农作物病害检测技术领域,特别涉及一种田间麦穗疏松架,包括框体、网格、拍摄单元、支架以及支腿,所述的支腿将框体支撑在麦穗位置处,网格设置在框体内侧用于供麦穗穿过,拍摄单元通过支架连接在框体上且拍摄单元可以围绕框体转动从而实现圆周方向多个角度的图像拍摄。框体主要方便固定其他单元,在框体中设置网格以后,可以让每个小格子中穿过一株麦穗,这样就可以将田间凌乱的麦穗变得齐整;再通过对小格子的识别,可以方便对各角度中同一株麦穗进行识别,这样就可以通过多角度麦穗图片来进行麦穗病害检测,保证后续检测的准确性;同时,使用本装置无需破坏性采摘麦穗,可以实现无损检测。
-
-
-
-
-
-
-
-
-