-
公开(公告)号:CN107944476B
公开(公告)日:2019-06-21
申请号:CN201711102908.3
申请日:2017-11-10
Applicant: 大连理工大学
Abstract: 本发明属于计算机应用及人工智能技术领域,涉及一种基于深度强化学习的黄桃挖核机器人行为控制策略。针对传统的机械控制方法难以有效的对黄桃挖核机器人进行行为控制问题,本发明提出了一种基于深度强化学习的方法对具有视觉功能的黄桃挖核机器人进行行为控制,以期提高其工作性能。本专利发挥了深度学习的感知能力和强化学习的决策能力,使机器人能够利用深度学习识别桃核状态,进而,通过强化学习的方法指导单片机控制电机挖除桃核,以最终完成挖核任务。本发明对于利用机器代替人工劳力的挖核任务具有优势。
-
公开(公告)号:CN108009518A
公开(公告)日:2018-05-08
申请号:CN201711373435.0
申请日:2017-12-19
Applicant: 大连理工大学
CPC classification number: G06K9/00818 , G06K9/6273 , G06K2209/25 , G06N3/0454 , G06N3/08
Abstract: 本发明属于计算机应用及计算视觉技术领域,提供了一种基于快速二分卷积神经网络的层次化交通标识识别方法。本发明设计了快速二分卷积神经网络结构以缓解卷积过程的计算量大与耗时问题,并提出了基于快速卷积神经网络的层次化分类算法。具体应用上,在粗分类阶段,首先对交通标识图像进行预处理得到感兴趣区域,然后将感兴趣区域输入到快速二分卷积神经网络粗分为若干大类;在细分类阶段,针对各类的特点对交通标识进行再次预处理,对处理后的标识进一步利用快速二分卷积网络进行细分类得出最终结果。结果表明,提出的算法不仅具有较高的分类正确率,同时具有较快的处理速度,更加适用于实时性要求较高的交通标识识别系统。
-
公开(公告)号:CN107944476A
公开(公告)日:2018-04-20
申请号:CN201711102908.3
申请日:2017-11-10
Applicant: 大连理工大学
CPC classification number: G06K9/6256 , B25J9/1679 , G06F17/5009 , G06K9/6267 , G06N3/0454
Abstract: 本发明属于计算机应用及人工智能技术领域,涉及一种基于深度强化学习的黄桃挖核机器人行为控制策略。针对传统的机械控制方法难以有效的对黄桃挖核机器人进行行为控制问题,本发明提出了一种基于深度强化学习的方法对具有视觉功能的黄桃挖核机器人进行行为控制,以期提高其工作性能。本发明发挥了深度学习的感知能力和强化学习的决策能力,使机器人能够利用深度学习识别桃核状态,进而,通过强化学习的方法指导单片机控制电机挖除桃核,以最终完成挖核任务。本发明对于利用机器代替人工劳力的挖核任务具有优势。
-
-